Suppr超能文献

利用跨谱匹配实现更精确的虹膜识别。

Toward More Accurate Iris Recognition Using Cross-Spectral Matching.

出版信息

IEEE Trans Image Process. 2017 Jan;26(1):208-221. doi: 10.1109/TIP.2016.2616281. Epub 2016 Oct 10.

Abstract

Iris recognition systems are increasingly deployed for large-scale applications such as national ID programs, which continue to acquire millions of iris images to establish identity among billions. However, with the availability of variety of iris sensors that are deployed for the iris imaging under different illumination/environment, significant performance degradation is expected while matching such iris images acquired under two different domains (either sensor-specific or wavelength-specific). This paper develops a domain adaptation framework to address this problem and introduces a new algorithm using Markov random fields model to significantly improve cross-domain iris recognition. The proposed domain adaptation framework based on the naive Bayes nearest neighbor classification uses a real-valued feature representation, which is capable of learning domain knowledge. Our approach to estimate corresponding visible iris patterns from the synthesis of iris patches in the near infrared iris images achieves outperforming results for the cross-spectral iris recognition. In this paper, a new class of bi-spectral iris recognition system that can simultaneously acquire visible and near infra-red images with pixel-to-pixel correspondences is proposed and evaluated. This paper presents experimental results from three publicly available databases; PolyU cross-spectral iris image database, IIITD CLI and UND database, and achieve outperforming results for the cross-sensor and cross-spectral iris matching.

摘要

虹膜识别系统越来越多地被用于大规模应用,如国家 ID 计划,这些计划继续获取数以百万计的虹膜图像,以在数十亿人中建立身份。然而,由于各种虹膜传感器的可用性,这些传感器在不同的照明/环境下被用于虹膜成像,因此在匹配来自两个不同域(传感器特定或波长特定)的虹膜图像时,预计会出现显著的性能下降。本文开发了一种域自适应框架来解决这个问题,并引入了一种使用马尔可夫随机场模型的新算法,以显著提高跨域虹膜识别。所提出的基于朴素贝叶斯最近邻分类的域自适应框架使用实值特征表示,能够学习域知识。我们的方法从近红外虹膜图像中的虹膜斑块合成中估计对应的可见虹膜模式,在跨光谱虹膜识别中取得了优异的结果。在本文中,提出并评估了一种新的双光谱虹膜识别系统,该系统可以同时获取具有像素对像素对应关系的可见和近红外图像。本文从三个公开可用的数据库,即 PolyU 跨光谱虹膜图像数据库、IIITD CLI 和 UND 数据库,展示了实验结果,并在跨传感器和跨光谱虹膜匹配方面取得了优异的结果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验