Suppr超能文献

前列腺健康指数可改善侵袭性前列腺癌的多变量风险预测。

Prostate Health Index improves multivariable risk prediction of aggressive prostate cancer.

作者信息

Loeb Stacy, Shin Sanghyuk S, Broyles Dennis L, Wei John T, Sanda Martin, Klee George, Partin Alan W, Sokoll Lori, Chan Daniel W, Bangma Chris H, van Schaik Ron H N, Slawin Kevin M, Marks Leonard S, Catalona William J

机构信息

Department of Urology and Population Health, NYU Langone Medical Center, New York, NY, USA.

Beckman Coulter Incorporated, Carlsbad, CA, USA.

出版信息

BJU Int. 2017 Jul;120(1):61-68. doi: 10.1111/bju.13676. Epub 2016 Nov 22.

Abstract

OBJECTIVE

To examine the use of the Prostate Health Index (PHI) as a continuous variable in multivariable risk assessment for aggressive prostate cancer in a large multicentre US study.

MATERIALS AND METHODS

The study population included 728 men, with prostate-specific antigen (PSA) levels of 2-10 ng/mL and a negative digital rectal examination, enrolled in a prospective, multi-site early detection trial. The primary endpoint was aggressive prostate cancer, defined as biopsy Gleason score ≥7. First, we evaluated whether the addition of PHI improves the performance of currently available risk calculators (the Prostate Cancer Prevention Trial [PCPT] and European Randomised Study of Screening for Prostate Cancer [ERSPC] risk calculators). We also designed and internally validated a new PHI-based multivariable predictive model, and created a nomogram.

RESULTS

Of 728 men undergoing biopsy, 118 (16.2%) had aggressive prostate cancer. The PHI predicted the risk of aggressive prostate cancer across the spectrum of values. Adding PHI significantly improved the predictive accuracy of the PCPT and ERSPC risk calculators for aggressive disease. A new model was created using age, previous biopsy, prostate volume, PSA and PHI, with an area under the curve of 0.746. The bootstrap-corrected model showed good calibration with observed risk for aggressive prostate cancer and had net benefit on decision-curve analysis.

CONCLUSION

Using PHI as part of multivariable risk assessment leads to a significant improvement in the detection of aggressive prostate cancer, potentially reducing harms from unnecessary prostate biopsy and overdiagnosis.

摘要

目的

在美国一项大型多中心研究中,检验前列腺健康指数(PHI)作为连续变量在侵袭性前列腺癌多变量风险评估中的应用。

材料与方法

研究人群包括728名男性,其前列腺特异性抗原(PSA)水平为2 - 10 ng/mL且直肠指检阴性,这些男性参与了一项前瞻性、多中心早期检测试验。主要终点为侵袭性前列腺癌,定义为活检Gleason评分≥7。首先,我们评估添加PHI是否能改善现有风险计算器(前列腺癌预防试验[PCPT]和欧洲前列腺癌筛查随机研究[ERSPC]风险计算器)的性能。我们还设计并在内部验证了一个基于PHI的新多变量预测模型,并创建了一个列线图。

结果

在接受活检的728名男性中,118名(16.2%)患有侵袭性前列腺癌。PHI在整个数值范围内预测了侵袭性前列腺癌的风险。添加PHI显著提高了PCPT和ERSPC风险计算器对侵袭性疾病的预测准确性。使用年龄、既往活检、前列腺体积、PSA和PHI创建了一个新模型,曲线下面积为0.746。经自展校正的模型显示与侵袭性前列腺癌的观察风险具有良好的校准,并且在决策曲线分析中有净效益。

结论

将PHI用作多变量风险评估的一部分可显著改善侵袭性前列腺癌的检测,有可能减少不必要的前列腺活检和过度诊断带来的危害。

相似文献

1
Prostate Health Index improves multivariable risk prediction of aggressive prostate cancer.
BJU Int. 2017 Jul;120(1):61-68. doi: 10.1111/bju.13676. Epub 2016 Nov 22.
2
Improving multivariable prostate cancer risk assessment using the Prostate Health Index.
BJU Int. 2016 Mar;117(3):409-17. doi: 10.1111/bju.13143. Epub 2015 May 24.
4
Prostate cancer risk assessment tools in an unscreened population.
World J Urol. 2015 Jun;33(6):827-32. doi: 10.1007/s00345-014-1365-7. Epub 2014 Aug 5.
8
Prediction of prostate cancer risk: the role of prostate volume and digital rectal examination in the ERSPC risk calculators.
Eur Urol. 2012 Mar;61(3):577-83. doi: 10.1016/j.eururo.2011.11.012. Epub 2011 Nov 15.
10
Phi-based risk calculators performed better in the prediction of prostate cancer in the Chinese population.
Asian J Androl. 2019 Nov-Dec;21(6):592-597. doi: 10.4103/aja.aja_125_18.

引用本文的文献

2
Screening for prostate cancer: evidence, ongoing trials, policies and knowledge gaps.
BMJ Oncol. 2023 Apr 20;2(1):e000039. doi: 10.1136/bmjonc-2023-000039. eCollection 2023.
4
Risk calculators for the detection of prostate cancer: a systematic review.
Prostate Cancer Prostatic Dis. 2024 Sep;27(3):544-557. doi: 10.1038/s41391-024-00852-w. Epub 2024 Jun 3.
5
Liquid Biomarkers in Prostate Cancer Diagnosis: Current Status and Emerging Prospects.
World J Mens Health. 2025 Jan;43(1):8-27. doi: 10.5534/wjmh.230386. Epub 2024 Apr 11.
6
Biomarker vs MRI-Enhanced Strategies for Prostate Cancer Screening: The STHLM3-MRI Randomized Clinical Trial.
JAMA Netw Open. 2024 Apr 1;7(4):e247131. doi: 10.1001/jamanetworkopen.2024.7131.
8
BioPrev-C - development and validation of a contemporary prostate cancer risk calculator.
Front Oncol. 2024 Feb 21;14:1343999. doi: 10.3389/fonc.2024.1343999. eCollection 2024.
9
The Capio Prostate Cancer Center Model for Prostate Cancer Diagnostics-Real-world Evidence from 2018 to 2022.
Eur Urol Open Sci. 2024 Feb 6;61:29-36. doi: 10.1016/j.euros.2024.01.012. eCollection 2024 Mar.

本文引用的文献

1
Prostate Health Index (PHI) Predicts High-stage Pathology in African American Men.
Urology. 2016 Apr;90:136-40. doi: 10.1016/j.urology.2015.12.004. Epub 2015 Dec 10.
2
Improving multivariable prostate cancer risk assessment using the Prostate Health Index.
BJU Int. 2016 Mar;117(3):409-17. doi: 10.1111/bju.13143. Epub 2015 May 24.
4
Multicenter Evaluation of the Prostate Health Index to Detect Aggressive Prostate Cancer in Biopsy Naïve Men.
J Urol. 2015 Jul;194(1):65-72. doi: 10.1016/j.juro.2015.01.091. Epub 2015 Jan 28.
5
The prostate health index selectively identifies clinically significant prostate cancer.
J Urol. 2015 Apr;193(4):1163-9. doi: 10.1016/j.juro.2014.10.121. Epub 2014 Nov 15.
8
Comparison Between the Four-kallikrein Panel and Prostate Health Index for Predicting Prostate Cancer.
Eur Urol. 2015 Jul;68(1):139-46. doi: 10.1016/j.eururo.2014.08.010. Epub 2014 Aug 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验