Suppr超能文献

受罗勒籽启发设计的单分散核壳结构Sn@C杂化物,其被限制在碳基质中以增强锂存储性能。

Basil Seed Inspired Design for a Monodisperse Core-Shell Sn@C Hybrid Confined in a Carbon Matrix for Enhanced Lithium-Storage Performance.

作者信息

Qin Jinwen, Liu Bing, Cao Minhua

机构信息

Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institution of Technology, Beijing, 100081, P. R. China.

出版信息

Chem Asian J. 2016 Dec 19;11(24):3520-3527. doi: 10.1002/asia.201601180. Epub 2016 Nov 28.

Abstract

Tin anode materials have attracted much attention owing to their high theoretical capacity, although rapid capacity fade is commonly observed mainly because of structural degradation resulting from volume expansion. Herein, we report a versatile strategy based on a basil seed inspired design for constructing a monodisperse core-shell Sn@C hybrid confined in a carbon matrix (Sn basil seeds). Analogous to the structure of basil seeds soaked in water, Sn basil seeds are used to tackle the volume expansion problem in lithium-ion batteries. Monodisperse Sn cores are encapsulated by a thick carbon layer, which thus lowers the electrolyte contact area. The obtained Sn basil seeds are closely packed to construct a framework that supplies fast electron transport and provides a reinforced mechanical backbone. As a consequence, an ensemble of this hybrid network shows significantly enhanced lithium-storage performance with a high capacity of 870 mAh g at a current density of 0.4 A g over 600 cycles. After the intense cycling, the Sn cores transform into ultrafine nanocrystals with sizes of 3-6 nm. The structural and morphological evolution of the Sn cores can reasonably explain the gradual increase in the capacity and the long-term cycling ability of our Sn basil seeds.

摘要

锡阳极材料因其高理论容量而备受关注,尽管通常观察到容量快速衰减,主要原因是体积膨胀导致的结构退化。在此,我们报告了一种基于罗勒籽启发设计的通用策略,用于构建一种单分散的核壳结构Sn@C复合材料,该复合材料被限制在碳基体中(Sn罗勒籽)。类似于浸泡在水中的罗勒籽结构,Sn罗勒籽用于解决锂离子电池中的体积膨胀问题。单分散的Sn核被一层厚厚的碳层包裹,从而降低了电解质接触面积。所制备的Sn罗勒籽紧密堆积形成一个框架,该框架提供快速的电子传输并提供增强的机械骨架。因此,这种混合网络的整体在0.4 A g的电流密度下经过600次循环后,展现出显著增强的储锂性能,具有870 mAh g的高容量。经过剧烈循环后,Sn核转变为尺寸为3 - 6 nm的超细纳米晶体。Sn核的结构和形态演变可以合理地解释我们的Sn罗勒籽容量的逐渐增加和长期循环能力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验