Suppr超能文献

利用主成分分析通过对社会经济地位进行排名来确定卫生服务提供的优先社区。

Using Principal Component Analysis to Identify Priority Neighbourhoods for Health Services Delivery by Ranking Socioeconomic Status.

作者信息

Friesen Christine Elizabeth, Seliske Patrick, Papadopoulos Andrew

机构信息

University of Guelph, Guelph, Ontario, Canada.

Wellington-Dufferin-Guelph Public Health, Guelph, Ontario, Canada.

出版信息

Online J Public Health Inform. 2016 Sep 15;8(2):e192. doi: 10.5210/ojphi.v8i2.6733. eCollection 2016.

Abstract

Socioeconomic status (SES) is a comprehensive indicator of health status and is useful in area-level health research and informing public health resource allocation. Principal component analysis (PCA) is a useful tool for developing SES indices to identify area-level disparities in SES within communities. While SES research in Canada has relied on census data, the voluntary nature of the 2011 National Household Survey challenges the validity of its data, especially income variables. This study sought to determine the appropriateness of replacing census income information with tax filer data in neighbourhood SES index development. Census and taxfiler data for Guelph, Ontario were retrieved for the years 2005, 2006, and 2011. Data were extracted for eleven income and non-income SES variables. PCA was employed to identify significant principal components from each dataset and weights of each contributing variable. Variable-specific factor scores were applied to standardized census and taxfiler data values to produce SES scores. The substitution of taxfiler income variables for census income variables yielded SES score distributions and neighbourhood SES classifications that were similar to SES scores calculated using entirely census variables. Combining taxfiler income variables with census non-income variables also produced clearer SES level distinctions. Internal validation procedures indicated that utilizing multiple principal components produced clearer SES level distinctions than using only the first principal component. Identifying socioeconomic disparities between neighbourhoods is an important step in assessing the level of disadvantage of communities. The ability to replace census income information with taxfiler data to develop SES indices expands the versatility of public health research and planning in Canada, as more data sources can be explored. The apparent usefulness of PCA also contributes to the improvement of SES measurement and calculation methods, and the freedom to input area-specific data allows the present method to be adapted to other locales.

摘要

社会经济地位(SES)是健康状况的综合指标,在区域层面的健康研究以及为公共卫生资源分配提供信息方面很有用。主成分分析(PCA)是开发SES指数以识别社区内区域层面SES差异的有用工具。虽然加拿大的SES研究依赖于人口普查数据,但2011年全国家庭调查的自愿性质对其数据的有效性提出了挑战,尤其是收入变量。本研究旨在确定在邻里SES指数开发中用纳税申报数据替代人口普查收入信息的适用性。检索了安大略省圭尔夫市2005年、2006年和2011年的人口普查和纳税申报数据。提取了11个收入和非收入SES变量的数据。采用主成分分析从每个数据集中识别显著的主成分以及每个贡献变量的权重。将特定变量的因子得分应用于标准化的人口普查和纳税申报数据值以产生SES得分。用纳税申报收入变量替代人口普查收入变量产生的SES得分分布和邻里SES分类与使用完全人口普查变量计算的SES得分相似。将纳税申报收入变量与人口普查非收入变量相结合也产生了更清晰的SES水平区分。内部验证程序表明,使用多个主成分比仅使用第一个主成分产生更清晰的SES水平区分。识别邻里之间的社会经济差异是评估社区劣势程度的重要一步。用纳税申报数据替代人口普查收入信息来开发SES指数的能力扩展了加拿大公共卫生研究和规划的通用性,因为可以探索更多数据源。主成分分析的明显有用性也有助于改进SES测量和计算方法,并且输入特定区域数据的自由度使得本方法能够适用于其他地区。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c87b/5065523/db71921c1dd5/ojphi-08-e192-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验