Suppr超能文献

透明度、可用性和可重复性:以灵长类动物为例改进比较数据库的指导原则。

Transparency, usability, and reproducibility: Guiding principles for improving comparative databases using primates as examples.

作者信息

Borries Carola, Sandel Aaron A, Koenig Andreas, Fernandez-Duque Eduardo, Kamilar Jason M, Amoroso Caroline R, Barton Robert A, Bray Joel, Di Fiore Anthony, Gilby Ian C, Gordon Adam D, Mundry Roger, Port Markus, Powell Lauren E, Pusey Anne E, Spriggs Amanda, Nunn Charles L

出版信息

Evol Anthropol. 2016 Sep;25(5):232-238. doi: 10.1002/evan.21502.

Abstract

Recent decades have seen rapid development of new analytical methods to investigate patterns of interspecific variation. Yet these cutting-edge statistical analyses often rely on data of questionable origin, varying accuracy, and weak comparability, which seem to have reduced the reproducibility of studies. It is time to improve the transparency of comparative data while also making these improved data more widely available. We, the authors, met to discuss how transparency, usability, and reproducibility of comparative data can best be achieved. We propose four guiding principles: 1) data identification with explicit operational definitions and complete descriptions of methods; 2) inclusion of metadata that capture key characteristics of the data, such as sample size, geographic coordinates, and nutrient availability (for example, captive versus wild animals); 3) documentation of the original reference for each datum; and 4) facilitation of effective interactions with the data via user friendly and transparent interfaces. We urge reviewers, editors, publishers, database developers and users, funding agencies, researchers publishing their primary data, and those performing comparative analyses to embrace these standards to increase the transparency, usability, and reproducibility of comparative studies.

摘要

近几十年来,用于研究种间变异模式的新分析方法迅速发展。然而,这些前沿的统计分析往往依赖于来源存疑、准确性各异且可比性较弱的数据,这似乎降低了研究的可重复性。现在是时候提高比较数据的透明度,同时让这些经过改进的数据更广泛地可用了。我们这些作者聚在一起讨论如何才能最好地实现比较数据的透明度、可用性和可重复性。我们提出四条指导原则:1)通过明确的操作定义和方法的完整描述来识别数据;2)纳入捕获数据关键特征的元数据,如样本大小、地理坐标和营养可利用性(例如,圈养动物与野生动物);3)记录每个数据的原始参考文献;4)通过用户友好且透明的界面促进与数据的有效交互。我们敦促审稿人、编辑、出版商、数据库开发者和用户、资助机构、发布其原始数据的研究人员以及进行比较分析的人员采用这些标准,以提高比较研究的透明度、可用性和可重复性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验