Yu Qiang, Reutens David, O'Brien Kieran, Vegh Viktor
Centre for Advanced Imaging, the University of Queensland, Brisbane, Queensland, Australia.
Healthcare Sector, Siemens Ltd, Brisbane, Queensland, Australia.
Hum Brain Mapp. 2017 Feb;38(2):1068-1081. doi: 10.1002/hbm.23441. Epub 2016 Oct 18.
OBJECTIVES: Tissue microstructure features, namely axon radius and volume fraction, provide important information on the function of white matter pathways. These parameters vary on the scale much smaller than imaging voxels (microscale) yet influence the magnetic resonance imaging diffusion signal at the image voxel scale (macroscale) in an anomalous manner. Researchers have already mapped anomalous diffusion parameters from magnetic resonance imaging data, but macroscopic variations have not been related to microscale influences. With the aid of a tissue model, we aimed to connect anomalous diffusion parameters to axon radius and volume fraction using diffusion-weighted magnetic resonance imaging measurements. EXPERIMENTAL DESIGN: An ex vivo human brain experiment was performed to directly validate axon radius and volume fraction measurements in the human brain. These findings were validated using electron microscopy. Additionally, we performed an in vivo study on nine healthy participants to map axon radius and volume fraction along different regions of the corpus callosum projecting into various cortical areas identified using tractography. PRINCIPAL OBSERVATIONS: We found a clear relationship between anomalous diffusion parameters and axon radius and volume fraction. We were also able to map accurately the trend in axon radius along the corpus callosum, and in vivo findings resembled the low-high-low-high behaviour in axon radius demonstrated previously. CONCLUSIONS: Axon radius and volume fraction measurements can potentially be used in brain connectivity studies and to understand the implications of white matter structure in brain diseases and disorders. Hum Brain Mapp 38:1068-1081, 2017. © 2016 Wiley Periodicals, Inc.
目的:组织微观结构特征,即轴突半径和体积分数,为白质通路的功能提供重要信息。这些参数在比成像体素小得多的尺度(微观尺度)上变化,但却以一种异常的方式影响图像体素尺度(宏观尺度)上的磁共振成像扩散信号。研究人员已经从磁共振成像数据中绘制出异常扩散参数,但宏观变化尚未与微观尺度影响相关联。借助一个组织模型,我们旨在利用扩散加权磁共振成像测量将异常扩散参数与轴突半径和体积分数联系起来。 实验设计:进行了一项离体人脑实验,以直接验证人脑中轴突半径和体积分数的测量结果。这些发现通过电子显微镜进行了验证。此外,我们对9名健康参与者进行了一项体内研究,以绘制胼胝体不同区域投射到通过纤维束成像确定的各个皮质区域的轴突半径和体积分数。 主要观察结果:我们发现异常扩散参数与轴突半径和体积分数之间存在明显关系。我们还能够准确绘制出胼胝体轴突半径的趋势,并且体内研究结果类似于先前证明的轴突半径的低 - 高 - 低 - 高行为。 结论:轴突半径和体积分数测量可能可用于脑连接性研究,并有助于理解白质结构在脑部疾病和紊乱中的意义。《人类大脑图谱》38:1068 - 1081,2017年。©2016威利期刊公司。
Hum Brain Mapp. 2017-8-2
J Vib Control. 2016-5
Neuroimage. 2015-7-1
Microporous Mesoporous Mater. 2013-9-15
Philos Trans A Math Phys Eng Sci. 2013-4-1
Cereb Cortex. 2012-2-1