Suppr超能文献

人工耳蜗电极插入过程中的蜗内压力瞬变

Intracochlear Pressure Transients During Cochlear Implant Electrode Insertion.

作者信息

Greene Nathaniel T, Mattingly Jameson K, Banakis Hartl Renee M, Tollin Daniel J, Cass Stephen P

机构信息

*Department of Otolaryngology†Department of Physiology and Biophysics, University of Colorado School of Medicine, Aurora, Colorado.

出版信息

Otol Neurotol. 2016 Dec;37(10):1541-1548. doi: 10.1097/MAO.0000000000001232.

Abstract

HYPOTHESIS

Cochlear implant (CI) electrode insertion into the round window induces pressure transients in the cochlear fluid comparable to high-intensity sound transients.

BACKGROUND

Many patients receiving a CI have some remaining functional hearing at low frequencies; thus, devices and surgical techniques have been developed to use this residual hearing. To maintain functional acoustic hearing, it is important to retain function of any hair cells and auditory nerve fibers innervating the basilar membrane; however, in a subset of patients, residual low-frequency hearing is lost after CI insertion. Here, we test the hypothesis that transient intracochlear pressure spikes are generated during CI electrode insertion, which could cause damage and compromise residual hearing.

METHODS

Human cadaveric temporal bones were prepared with an extended facial recess. Pressures in the scala vestibuli and tympani were measured with fiber-optic pressure sensors inserted into the cochlea near the oval and round windows, whereas CI electrodes (five styles from two manufacturers) were inserted into the cochlea via a round window approach.

RESULTS

Pressures in the scala tympani tended to be larger in magnitude than pressures in the scala vestibuli, consistent with electrode insertion into the scala tympani. CI electrode insertion produced a range of pressure transients in the cochlea that could occur alone or as part of a train of spikes with equivalent peak sound pressure levels in excess of 170 dB sound pressure level. Instances of pressure transients varied with electrode styles.

CONCLUSION

Results suggest electrode design, insertion mechanism, and surgical technique affect the magnitude and rate of intracochlear pressure transients during CI electrode insertion. Pressure transients showed intensities similar to those elicited by high-level sounds and thus could cause damage to the basilar membrane and/or hair cells.

摘要

假设

人工耳蜗(CI)电极插入圆窗会在耳蜗内淋巴液中引发压力瞬变,其与高强度声音瞬变相当。

背景

许多接受人工耳蜗植入的患者在低频仍保留一定的功能性听力;因此,已开发出设备和手术技术来利用这种残余听力。为维持功能性听觉,保留任何支配基底膜的毛细胞和听神经纤维的功能很重要;然而,在一部分患者中,人工耳蜗植入后残余的低频听力会丧失。在此,我们检验这一假设,即在人工耳蜗电极插入过程中会产生耳蜗内压力瞬变尖峰,这可能会损害并危及残余听力。

方法

对人类尸体颞骨进行扩展面神经隐窝制备。通过插入靠近椭圆窗和圆窗的耳蜗内的光纤压力传感器测量前庭阶和鼓阶中的压力,而将人工耳蜗电极(来自两家制造商的五种型号)通过圆窗途径插入耳蜗。

结果

鼓阶中的压力在幅度上往往比前庭阶中的压力更大,这与电极插入鼓阶一致。人工耳蜗电极插入在耳蜗中产生一系列压力瞬变,这些瞬变可能单独出现,也可能作为一系列尖峰的一部分出现,其等效峰值声压级超过170dB声压级。压力瞬变的情况因电极型号而异。

结论

结果表明电极设计、插入机制和手术技术会影响人工耳蜗电极插入过程中耳蜗内压力瞬变的幅度和速率。压力瞬变显示出与高强度声音引发的强度相似,因此可能会对基底膜和/或毛细胞造成损害。

相似文献

1
Intracochlear Pressure Transients During Cochlear Implant Electrode Insertion.
Otol Neurotol. 2016 Dec;37(10):1541-1548. doi: 10.1097/MAO.0000000000001232.
6
Cochlear Implant Electrode Effect on Sound Energy Transfer Within the Cochlea During Acoustic Stimulation.
Otol Neurotol. 2015 Sep;36(9):1554-61. doi: 10.1097/MAO.0000000000000838.
7
Measurement and Mitigation of Intracochlear Pressure Transients During Cochlear Implant Electrode Insertion.
Otol Neurotol. 2022 Feb 1;43(2):174-182. doi: 10.1097/MAO.0000000000003401.
8
Cochleostomy site: implications for electrode placement and hearing preservation.
Acta Otolaryngol. 2005 Aug;125(8):870-6. doi: 10.1080/00016480510031489.
10
Comparison of round window and cochleostomy approaches with a prototype hearing preservation electrode.
Audiol Neurootol. 2006;11 Suppl 1:42-8. doi: 10.1159/000095613. Epub 2006 Oct 6.

引用本文的文献

2
Characterization of Tip Fold-Over Using Fluoroscopy and Intracochlear Pressure in Cadaver Specimens.
Laryngoscope. 2025 May;135(5):1795-1802. doi: 10.1002/lary.31977. Epub 2024 Dec 24.
3
Feasibility of Using Inertial Measurement Units (IMUs) to Augment Cadaveric Temporal Training.
Laryngoscope. 2025 Apr;135(4):1465-1471. doi: 10.1002/lary.31878. Epub 2024 Nov 13.
4
Quantitative in-vitro assessment of a novel robot-assisted system for cochlear implant electrode insertion.
Int J Comput Assist Radiol Surg. 2025 Feb;20(2):323-332. doi: 10.1007/s11548-024-03276-y. Epub 2024 Oct 1.
5
The role of pressure and friction forces in automated insertion of cochlear implants.
Front Neurol. 2024 Aug 6;15:1430694. doi: 10.3389/fneur.2024.1430694. eCollection 2024.
7
Implications of intracochlear decomposition gas formation in non-putrefied cadavers.
Front Surg. 2024 Jun 14;11:1365535. doi: 10.3389/fsurg.2024.1365535. eCollection 2024.
9
Metronome-guided cochlear implantation for slower and smoother insertions of lateral wall electrodes.
Eur Arch Otorhinolaryngol. 2024 Sep;281(9):4603-4609. doi: 10.1007/s00405-024-08639-4. Epub 2024 Apr 17.
10
Robotic assistance during cochlear implantation: the rationale for consistent, controlled speed of electrode array insertion.
Front Neurol. 2024 Jan 22;15:1335994. doi: 10.3389/fneur.2024.1335994. eCollection 2024.

本文引用的文献

1
Differential Intracochlear Sound Pressure Measurements in Human Temporal Bones with an Off-the-Shelf Sensor.
Biomed Res Int. 2016;2016:6059479. doi: 10.1155/2016/6059479. Epub 2016 Aug 16.
2
Influence of cochlear implantation on vestibular function.
Acta Otolaryngol. 2016 Jul;136(7):655-9. doi: 10.3109/00016489.2016.1154186. Epub 2016 Mar 23.
3
Effects of Different Insertion Techniques of a Cochlear Implant Electrode on the Intracochlear Pressure.
Audiol Neurootol. 2016;21(1):30-7. doi: 10.1159/000442041. Epub 2016 Jan 22.
4
Cochlear Implant Electrode Effect on Sound Energy Transfer Within the Cochlea During Acoustic Stimulation.
Otol Neurotol. 2015 Sep;36(9):1554-61. doi: 10.1097/MAO.0000000000000838.
5
Effects of Skin Thickness on Cochlear Input Signal Using Transcutaneous Bone Conduction Implants.
Otol Neurotol. 2015 Sep;36(8):1403-11. doi: 10.1097/MAO.0000000000000814.
6
Otologic outcomes after blast injury: the Boston Marathon experience.
Otol Neurotol. 2014 Dec;35(10):1825-34. doi: 10.1097/MAO.0000000000000616.
7
Characterization of intracochlear rupture forces in fresh human cadaveric cochleae.
Otol Neurotol. 2015 Apr;36(4):657-61. doi: 10.1097/MAO.0000000000000573.
8
Conductive component after cochlear implantation in patients with residual hearing conservation.
Am J Audiol. 2014 Dec;23(4):359-64. doi: 10.1044/2014_AJA-14-0018.
9
Intracochlear fluid pressure changes related to the insertional speed of a CI electrode.
Biomed Res Int. 2014;2014:507241. doi: 10.1155/2014/507241. Epub 2014 Jul 16.
10
Pattern of hearing loss following cochlear implantation.
Eur Arch Otorhinolaryngol. 2015 Sep;272(9):2261-6. doi: 10.1007/s00405-014-3184-2. Epub 2014 Jul 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验