Zhang Zhen, Ma Cheng, Zhu Rong
Department of Precision Instrument, Tsinghua University, Beijing 100084, China.
Sensors (Basel). 2016 Oct 14;16(10):1709. doi: 10.3390/s16101709.
High integration of multi-functional instruments raises a critical issue in temperature control that is challenging due to its spatial-temporal complexity. This paper presents a multi-input multi-output (MIMO) self-tuning temperature sensing and control system for efficiently modulating the temperature environment within a multi-module instrument. The smart system ensures that the internal temperature of the instrument converges to a target without the need of a system model, thus making the control robust. The system consists of a fully-connected proportional-integral-derivative (PID) neural network (FCPIDNN) and an on-line self-tuning module. The experimental results show that the presented system can effectively control the internal temperature under various mission scenarios, in particular, it is able to self-reconfigure upon actuator failure. The system provides a new scheme for a complex and time-variant MIMO control system which can be widely applied for the distributed measurement and control of the environment in instruments, integration electronics, and house constructions.
多功能仪器的高度集成在温度控制方面引发了一个关键问题,由于其时空复杂性,这一问题具有挑战性。本文提出了一种多输入多输出(MIMO)自整定温度传感与控制系统,用于有效调节多模块仪器内的温度环境。该智能系统确保仪器的内部温度无需系统模型即可收敛到目标值,从而使控制具有鲁棒性。该系统由一个全连接比例积分微分(PID)神经网络(FCPIDNN)和一个在线自整定模块组成。实验结果表明,所提出的系统能够在各种任务场景下有效控制内部温度,特别是在执行器故障时能够进行自我重新配置。该系统为复杂时变MIMO控制系统提供了一种新方案,可广泛应用于仪器、集成电子和房屋建筑中的环境分布式测量与控制。