Tian Yao, Burch Kenneth S
Department of Physics, and Institute of Optical Sciences University of Toronto, Toronto, Ontario, Canada.
Department of Physics, Boston College, Chestnut Hill, Massachusetts, USA
Appl Spectrosc. 2016 Nov;70(11):1861-1871. doi: 10.1177/0003702816671065. Epub 2016 Oct 17.
Raman spectroscopy is a powerful technique, widely used in both academia and industry. In part, the technique's extensive use stems from its ability to uniquely identify and image various material parameters: composition, strain, temperature, lattice/excitation symmetry, and magnetism in bulk, nano, solid, and organic materials. However, in nanomaterials and samples with low thermal conductivity, these measurements require long acquisition times. On the other hand, charge-coupled device (CCD) detectors used in Raman microscopes are vulnerable to cosmic rays. As a result, many spurious spikes occur in the measured spectra, which can distort the result or require the spectra to be ignored. In this paper, we outline a new method that significantly improves upon existing algorithms for removing these spikes. Specifically, we employ wavelet transform and data clustering in a new spike-removal algorithm. This algorithm results in spike-free spectra with negligible spectral distortion. The reduced dependence on the selection of wavelets and intuitive wavelet coefficient adjustment strategy enables non-experts to employ these powerful spectra-filtering techniques.
拉曼光谱是一种强大的技术,在学术界和工业界都有广泛应用。该技术的广泛应用部分源于其能够独特地识别和成像各种材料参数:组成、应变、温度、晶格/激发对称性以及块状、纳米、固体和有机材料中的磁性。然而,在纳米材料和热导率低的样品中,这些测量需要很长的采集时间。另一方面,拉曼显微镜中使用的电荷耦合器件(CCD)探测器容易受到宇宙射线的影响。因此,在测量光谱中会出现许多虚假尖峰,这可能会扭曲结果或导致光谱被忽略。在本文中,我们概述了一种新方法,该方法在去除这些尖峰的现有算法基础上有显著改进。具体而言,我们在一种新的尖峰去除算法中采用了小波变换和数据聚类。该算法产生的光谱无尖峰,光谱失真可忽略不计。对小波选择的依赖性降低以及直观的小波系数调整策略使非专业人员也能够使用这些强大的光谱滤波技术。