Yan Chunsheng
Zhejiang University Library, Hangzhou 310058, China.
State Key Laboratory of Extreme Photonics and Instrumentation, Hangzhou 310058, China.
iScience. 2025 May 29;28(7):112759. doi: 10.1016/j.isci.2025.112759. eCollection 2025 Jul 18.
Spectroscopic techniques are indispensable for material characterization, yet their weak signals remain highly prone to interference from environmental noise, instrumental artifacts, sample impurities, scattering effects, and radiation-based distortions (e.g., fluorescence and cosmic rays). These perturbations not only significantly degrade measurement accuracy but also impair machine learning-based spectral analysis by introducing artifacts and biasing feature extraction. This review provides a systematic evaluation of critical spectral preprocessing methods-encompassing cosmic ray removal, baseline correction, scattering correction, normalization, filtering and smoothing, spectral derivatives, and advanced techniques like 3D correlation analysis-highlighting their theoretical underpinnings, performance trade-offs, and optimal application scenarios. The field is undergoing a transformative shift driven by three key innovations: context-aware adaptive processing, physics-constrained data fusion, and intelligent spectral enhancement. These cutting-edge approaches enable unprecedented detection sensitivity achieving sub-ppm levels while maintaining >99% classification accuracy, with transformative applications spanning pharmaceutical quality control, environmental monitoring, and remote sensing diagnostics.
光谱技术对于材料表征不可或缺,但其微弱信号极易受到环境噪声、仪器伪像、样品杂质、散射效应以及基于辐射的畸变(如荧光和宇宙射线)的干扰。这些干扰不仅会显著降低测量精度,还会通过引入伪像和使特征提取产生偏差来损害基于机器学习的光谱分析。本综述对关键的光谱预处理方法进行了系统评估,包括宇宙射线去除、基线校正、散射校正、归一化、滤波和平滑、光谱导数以及三维相关分析等先进技术,突出了它们的理论基础、性能权衡和最佳应用场景。该领域正经历由三项关键创新驱动的变革性转变:上下文感知自适应处理、物理约束数据融合和智能光谱增强。这些前沿方法实现了前所未有的检测灵敏度,达到亚ppm水平,同时保持>99%的分类准确率,其变革性应用涵盖药物质量控制、环境监测和遥感诊断。