Suppr超能文献

用于诊断CT成像和PET衰减校正的特定应用剂量高效光谱选择的快速分析方法。

Fast analytical approach of application specific dose efficient spectrum selection for diagnostic CT imaging and PET attenuation correction.

作者信息

Rui Xue, Jin Yannan, FitzGerald Paul F, Wu Mingye, Alessio Adam M, Kinahan Paul E, De Man Bruno

机构信息

Image Reconstruction Laboratory, GE Global Research Center, Niskayuna, NY, USA.

出版信息

Phys Med Biol. 2016 Nov 7;61(21):7787-7811. doi: 10.1088/0031-9155/61/21/7787. Epub 2016 Oct 18.

Abstract

Computed tomography (CT) has been used for a variety of applications, two of which include diagnostic imaging and attenuation correction for PET or SPECT imaging. Ideally, the x-ray tube spectrum should be optimized for the specific application to minimize the patient radiation dose while still providing the necessary information. In this study, we proposed a projection-based analytic approach for the analysis of contrast, noise, and bias. Dose normalized contrast to noise ratio (CNRD), inverse noise normalized by dose (IND) and bias are used as evaluation metrics to determine the optimal x-ray spectrum. Our simulation investigated the dose efficiency of the x-ray spectrum ranging from 40 kVp to 200 kVp. Water cylinders with diameters of 15 cm, 24 cm, and 35 cm were used in the simulation to cover a variety of patient sizes. The effects of electronic noise and pre-patient copper filtration were also evaluated. A customized 24 cm CTDI-like phantom with 13 mm diameter inserts filled with iodine (10 mg ml), tantalum (10 mg ml), water, and PMMA was measured with both standard (1.5 mGy) and ultra-low (0.2 mGy) dose to verify the simulation results at tube voltages of 80, 100, 120, and 140 kVp. For contrast-enhanced diagnostic imaging, the simulation results indicated that for high dose without filtration, the optimal kVp for water contrast is approximately 100 kVp for a 15 cm water cylinder. However, the 60 kVp spectrum produces the highest CNRD for bone and iodine. The optimal kVp for tantalum has two selections: approximately 50 and 100 kVp. The kVp that maximizes CNRD increases when the object size increases. The trend in the CTDI phantom measurements agrees with the simulation results, which also agrees with previous studies. Copper filtration improved the dose efficiency for water and tantalum, but reduced the iodine and bone dose efficiency in a clinically-relevant range (70-140 kVp). Our study also shows that for CT-based attenuation correction applications for PET or SPECT, a higher-kVp spectrum with copper filtration is preferable. This method is developed based on filter back projection and does not require image reconstruction or Monte Carlo dose estimates; thus, it could potentially be used for patient-specific and task-based on-the-fly protocol optimization.

摘要

计算机断层扫描(CT)已被用于多种应用,其中包括诊断成像以及PET或SPECT成像的衰减校正。理想情况下,X射线管光谱应针对特定应用进行优化,以在提供必要信息的同时将患者辐射剂量降至最低。在本研究中,我们提出了一种基于投影的分析方法来分析对比度、噪声和偏差。剂量归一化对比度噪声比(CNRD)、剂量归一化反噪声(IND)和偏差用作评估指标,以确定最佳X射线光谱。我们的模拟研究了40 kVp至200 kVp范围内X射线光谱的剂量效率。模拟中使用了直径为15 cm、24 cm和35 cm的水缸,以涵盖各种患者体型。还评估了电子噪声和患者前铜过滤的影响。使用标准剂量(1.5 mGy)和超低剂量(0.2 mGy)对定制的24 cm类CTDI体模进行测量,该体模带有13 mm直径的插入物,填充有碘(10 mg/ml)、钽(10 mg/ml)、水和聚甲基丙烯酸甲酯,以验证在80、100、120和140 kVp管电压下的模拟结果。对于对比增强诊断成像,模拟结果表明,对于无过滤的高剂量,对于15 cm水缸的水对比度,最佳kVp约为100 kVp。然而,60 kVp光谱对骨骼和碘产生最高的CNRD。钽的最佳kVp有两个选择:约50 kVp和100 kVp。使CNRD最大化的kVp随着物体尺寸的增加而增加。CTDI体模测量结果的趋势与模拟结果一致,这也与先前的研究一致。铜过滤提高了水和钽的剂量效率,但在临床相关范围(70 - 140 kVp)内降低了碘和骨骼的剂量效率。我们的研究还表明,对于PET或SPECT基于CT的衰减校正应用,具有铜过滤的较高kVp光谱更可取。该方法基于滤波反投影开发,不需要图像重建或蒙特卡洛剂量估计;因此,它有可能用于基于患者特定和任务的实时协议优化。

相似文献

1
Fast analytical approach of application specific dose efficient spectrum selection for diagnostic CT imaging and PET attenuation correction.
Phys Med Biol. 2016 Nov 7;61(21):7787-7811. doi: 10.1088/0031-9155/61/21/7787. Epub 2016 Oct 18.
2
Dual energy CT for attenuation correction with PET/CT.
Med Phys. 2014 Jan;41(1):012501. doi: 10.1118/1.4828838.
3
Dose optimization in pediatric cardiac x-ray imaging.
Med Phys. 2010 Oct;37(10):5258-69. doi: 10.1118/1.3488911.
4
Spectral optimization for micro-CT.
Med Phys. 2012 Jun;39(6):3229-39. doi: 10.1118/1.4718575.
5
Radiation dose and image quality in pediatric CT: effect of technical factors and phantom size and shape.
Radiology. 2004 Nov;233(2):515-22. doi: 10.1148/radiol.2332032107. Epub 2004 Sep 9.
7
Dose optimization in cardiac x-ray imaging.
Med Phys. 2013 Sep;40(9):091911. doi: 10.1118/1.4818016.
10
Ultra-low dose CT attenuation correction for PET/CT: analysis of sparse view data acquisition and reconstruction algorithms.
Phys Med Biol. 2015 Oct 7;60(19):7437-60. doi: 10.1088/0031-9155/60/19/7437. Epub 2015 Sep 9.

本文引用的文献

2
CT Image Contrast of High-Z Elements: Phantom Imaging Studies and Clinical Implications.
Radiology. 2016 Mar;278(3):723-33. doi: 10.1148/radiol.2015150577. Epub 2015 Sep 10.
3
Ultra-low dose CT attenuation correction for PET/CT: analysis of sparse view data acquisition and reconstruction algorithms.
Phys Med Biol. 2015 Oct 7;60(19):7437-60. doi: 10.1088/0031-9155/60/19/7437. Epub 2015 Sep 9.
6
Dose in x-ray computed tomography.
Phys Med Biol. 2014 Feb 7;59(3):R129-50. doi: 10.1088/0031-9155/59/3/R129. Epub 2014 Jan 17.
7
Modelling the physics in the iterative reconstruction for transmission computed tomography.
Phys Med Biol. 2013 Jun 21;58(12):R63-96. doi: 10.1088/0031-9155/58/12/R63. Epub 2013 Jun 5.
8
Biological performance of a size-fractionated core-shell tantalum oxide nanoparticle x-ray contrast agent.
Invest Radiol. 2012 Oct;47(10):578-87. doi: 10.1097/RLI.0b013e318260fc40.
9
10
Preclinical assessment of a zwitterionic tantalum oxide nanoparticle X-ray contrast agent.
ACS Nano. 2012 Aug 28;6(8):6650-8. doi: 10.1021/nn300928g. Epub 2012 Jul 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验