Suppr超能文献

光谱优化在微计算机断层扫描中的应用。

Spectral optimization for micro-CT.

机构信息

Institute of Medical Physics, University of Erlangen-Nürnberg, Henkestrasse 91, 91052 Erlangen, Germany.

出版信息

Med Phys. 2012 Jun;39(6):3229-39. doi: 10.1118/1.4718575.

Abstract

PURPOSE

To optimize micro-CT protocols with respect to x-ray spectra and thereby reduce radiation dose at unimpaired image quality.

METHODS

Simulations were performed to assess image contrast, noise, and radiation dose for different imaging tasks. The figure of merit used to determine the optimal spectrum was the dose-weighted contrast-to-noise ratio (CNRD). Both optimal photon energy and tube voltage were considered. Three different types of filtration were investigated for polychromatic x-ray spectra: 0.5 mm Al, 3.0 mm Al, and 0.2 mm Cu. Phantoms consisted of water cylinders of 20, 32, and 50 mm in diameter with a central insert of 9 mm which was filled with different contrast materials: an iodine-based contrast medium (CM) to mimic contrast-enhanced (CE) imaging, hydroxyapatite to mimic bone structures, and water with reduced density to mimic soft tissue contrast. Validation measurements were conducted on a commercially available micro-CT scanner using phantoms consisting of water-equivalent plastics. Measurements on a mouse cadaver were performed to assess potential artifacts like beam hardening and to further validate simulation results.

RESULTS

The optimal photon energy for CE imaging was found at 34 keV. For bone imaging, optimal energies were 17, 20, and 23 keV for the 20, 32, and 50 mm phantom, respectively. For density differences, optimal energies varied between 18 and 50 keV for the 20 and 50 mm phantom, respectively. For the 32 mm phantom and density differences, CNRD was found to be constant within 2.5% for the energy range of 21-60 keV. For polychromatic spectra and CMs, optimal settings were 50 kV with 0.2 mm Cu filtration, allowing for a dose reduction of 58% compared to the optimal setting for 0.5 mm Al filtration. For bone imaging, optimal tube voltages were below 35 kV. For soft tissue imaging, optimal tube settings strongly depended on phantom size. For 20 mm, low voltages were preferred. For 32 mm, CNRD was found to be almost independent of tube voltage. For 50 mm, voltages larger than 50 kV were preferred. For all three phantom sizes stronger filtration led to notable dose reduction for soft tissue imaging. Validation measurements were found to match simulations well, with deviations being less than 10%. Mouse measurements confirmed simulation results.

CONCLUSIONS

Optimal photon energies and tube settings strongly depend on both phantom size and imaging task at hand. For in vivo CE imaging and density differences, strong filtration and voltages of 50-65 kV showed good overall results. For soft tissue imaging of animals the size of a rat or larger, voltages higher than 65 kV allow to greatly reduce scan times while maintaining dose efficiency. For imaging of bone structures, usage of only minimum filtration and low tube voltages of 40 kV and below allow exploiting the high contrast of bone at very low energies. Therefore, a combination of two filtrations could prove beneficial for micro-CT: a soft filtration allowing for bone imaging at low voltages, and a variable stronger filtration (e.g., 0.2 mm Cu) for soft tissue and contrast-enhanced imaging.

摘要

目的

针对 X 射线光谱优化微 CT 方案,从而在不影响图像质量的情况下降低辐射剂量。

方法

通过模拟评估不同成像任务的图像对比度、噪声和辐射剂量。用于确定最佳光谱的性能指标是剂量加权对比度噪声比(CNRD)。同时考虑了最佳光子能量和管电压。研究了三种不同类型的多色 X 射线光谱过滤:0.5mm Al、3.0mm Al 和 0.2mm Cu。体模由直径为 20、32 和 50mm 的水筒组成,中心插入 9mm 的中央插入物,其中填充了不同的对比材料:碘基对比剂(CM)模拟对比增强(CE)成像、羟磷灰石模拟骨结构以及密度降低的水模拟软组织对比。使用由水等效塑料制成的体模在商业上可用的微 CT 扫描仪上进行验证测量。对老鼠尸体进行了测量,以评估像束硬化等潜在伪影,并进一步验证模拟结果。

结果

CE 成像的最佳光子能量为 34keV。对于骨成像,最佳能量分别为 17、20 和 23keV,用于 20、32 和 50mm 体模。对于密度差异,最佳能量在 18keV 至 50keV 之间变化,用于 20mm 和 50mm 体模。对于 32mm 体模和密度差异,在 21keV 至 60keV 的能量范围内,CNRD 发现恒定在 2.5%以内。对于多色光谱和 CM,最佳设置为 50kV 加 0.2mm Cu 过滤,与 0.5mm Al 过滤的最佳设置相比,可降低 58%的剂量。对于骨成像,最佳管电压低于 35kV。对于软组织成像,最佳管设置强烈依赖于体模尺寸。对于 20mm,优选低电压。对于 32mm,发现 CNRD 几乎独立于管电压。对于 50mm,优选大于 50kV 的电压。对于所有三种体模尺寸,更强的过滤都会导致软组织成像剂量显著减少。验证测量结果与模拟结果吻合良好,偏差小于 10%。对老鼠的测量结果证实了模拟结果。

结论

最佳光子能量和管设置强烈取决于体模尺寸和手头的成像任务。对于体内 CE 成像和密度差异,强烈过滤和 50-65kV 的电压显示出良好的整体效果。对于大鼠或更大动物的软组织成像,高于 65kV 的电压可以在保持剂量效率的同时大大减少扫描时间。对于骨结构成像,使用仅最小过滤和低于 40kV 的低管电压可以在非常低的能量下利用骨的高对比度。因此,两种过滤的组合可能对微 CT 有益:一种允许在低电压下进行骨成像的软过滤,以及一种用于软组织和对比增强成像的可变更强过滤(例如 0.2mm Cu)。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验