Suppr超能文献

内脏利什曼病数学建模的进展

Progress in the Mathematical Modelling of Visceral Leishmaniasis.

作者信息

Rock K S, Quinnell R J, Medley G F, Courtenay O

机构信息

University of Warwick, Coventry, United Kingdom.

University of Leeds, Leeds, United Kingdom.

出版信息

Adv Parasitol. 2016;94:49-131. doi: 10.1016/bs.apar.2016.08.001. Epub 2016 Oct 7.

Abstract

The leishmaniases comprise a complex of diseases characterized by clinical outcomes that range from self-limiting to chronic, and disfiguring and stigmatizing to life threatening. Diagnostic methods, treatments, and vector and reservoir control options exist, but deciding the most effective interventions requires a quantitative understanding of the population level infection and disease dynamics. The effectiveness of any set of interventions has to be determined within the context of operational conditions, including economic and political commitment. Mathematical models are the best available tools for studying quantitative systems crossing disciplinary spheres (biology, medicine, economics) within environmental and societal constraints. In 2005, the World Health Assembly and government health ministers of India, Nepal, and Bangladesh signed a Memorandum of Understanding to eliminate the life threatening form of leishmaniasis, visceral leishmaniasis (VL), on the Indian subcontinent by 2015 through a combination of early case detection, improved treatments, and vector control. The elimination target is <1 case/10,000 population at the district or subdistrict level compared to the current 20/10,000 in the regions of highest transmission. Towards this goal, this chapter focuses on mathematical models of VL, and the biology driving those models, to enable realistic predictions of the best combination of interventions. Several key issues will be discussed which have affected previous modelling of VL and the direction future modelling may take. Current understanding of the natural history of disease, immunity (and loss of immunity), and stages of infection and their durations are considered particularly for humans, and also for dogs. Asymptomatic and clinical infection are discussed in the context of their relative roles in Leishmania transmission, as well as key components of the parasite-sandfly-vector interaction and intervention strategies including diagnosis, treatment and vector control. Gaps in current biological knowledge and potential avenues to improve model structures and mathematical predictions are identified. Underpinning the marriage between biology and mathematical modelling, the content of this chapter represents the first step towards developing the next generation of models for VL.

摘要

利什曼病是一组疾病的统称,其临床症状从自限性到慢性不等,有的会导致毁容和污名化,甚至危及生命。目前已有诊断方法、治疗手段以及病媒和宿主控制措施,但要确定最有效的干预措施,需要对人群层面的感染和疾病动态有定量的了解。任何一套干预措施的有效性都必须在包括经济和政治承诺在内的操作条件背景下加以确定。数学模型是研究在环境和社会限制范围内跨越学科领域(生物学、医学、经济学)的定量系统的最佳可用工具。2005年,世界卫生大会以及印度、尼泊尔和孟加拉国的政府卫生部长签署了一项谅解备忘录,目标是到2015年在印度次大陆消除威胁生命的利什曼病形式——内脏利什曼病(VL),具体措施包括早期病例检测、改进治疗方法和病媒控制。消除目标是在地区或分区层面将发病率降至每10000人<1例,而目前在传播率最高的地区发病率为每10000人20例。为实现这一目标,本章重点关注VL的数学模型以及驱动这些模型的生物学原理,以便对最佳干预组合进行现实可行的预测。将讨论几个影响以往VL建模的关键问题以及未来建模可能的方向。特别针对人类和犬类,考虑了对疾病自然史、免疫(以及免疫丧失)、感染阶段及其持续时间的当前认识。在利什曼原虫传播中的相对作用背景下讨论了无症状感染和临床感染,以及寄生虫-白蛉-病媒相互作用和干预策略的关键组成部分,包括诊断、治疗和病媒控制。确定了当前生物学知识的差距以及改进模型结构和数学预测的潜在途径。本章内容是生物学与数学建模结合的基础,是朝着开发下一代VL模型迈出的第一步。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验