Suppr超能文献

加载椎体终板周边的重要性。

The importance of loading the periphery of the vertebral endplate.

作者信息

Cadman Joseph, Sutterlin Chester, Dabirrahmani Danè, Appleyard Richard

机构信息

Orthopaedic Biomechanics Group, Department of Biomedical Science, Faculty of Medicine and Health Science, Macquarie University, NSW, Australia.

University of Florida, FL, USA;; Spinal Health International, 511 Putter Lane, Longboat Key, FL, USA.

出版信息

J Spine Surg. 2016 Sep;2(3):178-184. doi: 10.21037/jss.2016.09.08.

Abstract

BACKGROUND

Commercial fusion cages typically provide support in the central region of the endplate, failing to utilize the increased compressive strength around the periphery. This study demonstrates the increase in compressive strength that can be achieved if the bony periphery of the endplate is loaded.

METHODS

Sixteen cadaveric lumbar vertebrae (L1-L5) were randomly divided into two even groups. A different commercial mass produced implant (MPI) was allocated to each group: (I) a Polyether-ether-ketone (PEEK) anterior lumber inter-body fusion (ALIF) MPI; and (II) a titanium ALIF MPI. Uniaxial compression at a displacement rate of 0.5 mm/sec was applied to all vertebrae during two phases: (I) with the allocated MPI situated in the central region of the endplate; (II) with an aluminum plate, designed to load the bony periphery of the endplate. The failure load and mode of failure was recorded.

RESULTS

From phase 1 to phase 2, the failure load increased from 1.1±0.4 to 2.9±1.4 kN for group 1; and from 1.3±1.0 to 3.0±1.9 kN for group 2. The increase in strength from phase 1 to phase 2 was statistically significant for each group (group 1: P<0.01, group 2: P<0.05, paired -test). There was no significant difference between the groups in either phase (P>0.05, -test). The mode of failure in phase 1 was the implant being forced through the endplate for both groups. In phase 2, the mode of failure was either a fracture of the epiphyseal rim or buckling of the side wall of the vertebral body.

CONCLUSIONS

Loading the periphery of the vertebral endplate achieved significant increase in compressive load capacity compared to loading the central region of the endplate. Clinically, this implies that patient-specific implants which load the periphery of the vertebral endplate could decrease the incidence of subsidence and improve surgical outcomes.

摘要

背景

市售融合器通常在终板中央区域提供支撑,未能利用周边区域增加的抗压强度。本研究证明,如果加载终板的骨质周边区域,抗压强度会增加。

方法

将16具尸体腰椎(L1-L5)随机分为两组。每组分配一种不同的市售量产植入物(MPI):(I)聚醚醚酮(PEEK)前路腰椎椎间融合(ALIF)MPI;(II)钛质ALIF MPI。在两个阶段对所有椎体施加0.5毫米/秒位移速率的单轴压缩:(I)将分配的MPI置于终板中央区域;(II)使用一块设计用于加载终板骨质周边区域的铝板。记录失效载荷和失效模式。

结果

从第1阶段到第2阶段,第1组的失效载荷从1.1±0.4千牛增加到2.9±l.4千牛;第2组从1.3±1.0千牛增加到3.0±1.9千牛。每组从第1阶段到第2阶段的强度增加具有统计学意义(第1组:P<0.01,第2组:P<0.05,配对检验)。两组在任一阶段均无显著差异(P>0.05,检验)。第1阶段两组的失效模式均为植入物被压穿终板。在第2阶段,失效模式为骨骺边缘骨折或椎体侧壁屈曲。

结论

与加载终板中央区域相比,加载椎体终板周边区域可显著提高抗压负荷能力。临床上,这意味着加载椎体终板周边区域的定制植入物可降低下沉发生率并改善手术效果。

相似文献

1
The importance of loading the periphery of the vertebral endplate.
J Spine Surg. 2016 Sep;2(3):178-184. doi: 10.21037/jss.2016.09.08.
5
Biomechanical analysis of thoracolumbar interbody constructs. How important is the endplate?
Spine (Phila Pa 1976). 1996 May 1;21(9):1032-6. doi: 10.1097/00007632-199605010-00007.
6
The effects of design and positioning of carbon fiber lumbar interbody cages and their subsidence in vertebral bodies.
J Spinal Disord Tech. 2012 Apr;25(2):116-22. doi: 10.1097/BSD.0b013e31820ef778.
7
Effect of implant design and endplate preparation on the compressive strength of interbody fusion constructs.
Spine (Phila Pa 1976). 2000 May 1;25(9):1077-84. doi: 10.1097/00007632-200005010-00007.
9
A biomechanical study of regional endplate strength and cage morphology as it relates to structural interbody support.
Spine (Phila Pa 1976). 2004 Nov 1;29(21):2389-94. doi: 10.1097/01.brs.0000143623.18098.e5.
10
Indirect decompression and vertebral body endplate strength after lateral interbody spacer impaction: cadaveric and foam-block models.
J Neurosurg Spine. 2016 May;24(5):727-33. doi: 10.3171/2015.10.SPINE15450. Epub 2016 Jan 29.

引用本文的文献

3
5
Biomechanical Comparison of Subsidence Between Patient-Specific and Non-Patient-Specific Lumbar Interbody Fusion Cages.
Global Spine J. 2024 May;14(4):1155-1163. doi: 10.1177/21925682221134913. Epub 2022 Oct 19.

本文引用的文献

1
Designing patient-specific 3D printed craniofacial implants using a novel topology optimization method.
Med Biol Eng Comput. 2016 Jul;54(7):1123-35. doi: 10.1007/s11517-015-1418-0. Epub 2015 Dec 11.
2
Design control for clinical translation of 3D printed modular scaffolds.
Ann Biomed Eng. 2015 Mar;43(3):774-86. doi: 10.1007/s10439-015-1270-2. Epub 2015 Feb 10.
3
Rapid prototyped patient specific implants for reconstruction of orbital wall defects.
J Craniomaxillofac Surg. 2014 Dec;42(8):1644-9. doi: 10.1016/j.jcms.2014.05.006. Epub 2014 May 23.
4
Radiographic and clinical evaluation of cage subsidence after stand-alone lateral interbody fusion.
J Neurosurg Spine. 2013 Jul;19(1):110-8. doi: 10.3171/2013.4.SPINE12319. Epub 2013 May 10.
6
Are stand-alone cages sufficient for anterior lumbar interbody fusion?
Orthop Surg. 2012 Feb;4(1):11-4. doi: 10.1111/j.1757-7861.2011.00164.x.
7
Interbody device shape and size are important to strengthen the vertebra-implant interface.
Spine (Phila Pa 1976). 2005 Mar 15;30(6):638-44. doi: 10.1097/01.brs.0000155419.24198.35.
8
Minimally invasive procedures for disorders of the lumbar spine.
Mayo Clin Proc. 2003 Oct;78(10):1249-56. doi: 10.4065/78.10.1249.
9
Effect of bone graft characteristics on the mechanical behavior of the lumbar spine.
J Biomech. 2002 Apr;35(4):491-7. doi: 10.1016/s0021-9290(01)00235-4.
10
Mapping the structural properties of the lumbosacral vertebral endplates.
Spine (Phila Pa 1976). 2001 Apr 15;26(8):889-96. doi: 10.1097/00007632-200104150-00012.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验