Hollowell J P, Vollmer D G, Wilson C R, Pintar F A, Yoganandan N
Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, USA.
Spine (Phila Pa 1976). 1996 May 1;21(9):1032-6. doi: 10.1097/00007632-199605010-00007.
A biomechanical study of human cadaveric thoracic vertebral bodies was conducted using several anterior fusion options subjected to axial loads. This study emphasized the contribution of the endplate to resistance of graft subsidence.
To determine the importance of the vertebral endplate in resisting subsidence of various constructs into the vertebral body; the relative efficacy of potential alternative graft constructs such as iliac crest, ribs, humerus, and titanium mesh cage; and the importance of bone mineral content, vertebral level, and cross-sectional graft area on construct subsidence.
As the fixation length of anterior and posterior spinal constructs is reduced, load sharing of the anterior column has become more important to reduce failure of the shorter devices. Several alternative graft constructs and surgical techniques have been used for reconstruction of the anterior column. There exist little comparative data as to whether any of these constructs are superior and whether the vertebral endplate contributes significantly to the integrity of the construct.
Sixty-three isolated human cadaveric vertebral bodies from T3 to T12 were used to test seven different constructs in direct axial load onto prepared endplates with an electrohydraulic testing device. These constructs were: 1) titanium mesh cage (17 x 22 mm) on intact endplate, 2) C-shaped humerus on intact endplate, 3) tricorticated iliac graft in "tee configuration" on intact endplate, 4) tricorticated iliac graft in cancellous trough, 5) triple rib strut graft, 6) single rib on endplate, and 7) single rib on cancellous body. Dual X-ray absorptiometry assessment of bone mineral content was performed. A uniaxial load was applied with force and displacement data collected to determine maximal load to "failure" of the vertebral body.
Preservation of vertebral endplate did not significantly increase the resistance to graft subsidence. The titanium cage construct provided the greatest resistance to axial load.
Preservation of the vertebral endplate may not offer a significant biomechanical advantage in reconstructing the anterior column. Several alternative constructs are mechanically equivalent.
使用几种前路融合方案对人类尸体胸椎椎体进行生物力学研究,使其承受轴向载荷。本研究强调了终板对植骨沉降阻力的作用。
确定椎体终板在抵抗各种植入物向椎体内沉降方面的重要性;潜在替代植骨结构(如髂嵴、肋骨、肱骨和钛网笼)的相对有效性;以及骨矿物质含量、椎体节段和植骨横截面积对植入物沉降的重要性。
随着脊柱前后路植入物固定长度的缩短,前柱分担载荷对于减少较短器械的失效变得更加重要。几种替代植骨结构和手术技术已被用于前柱重建。关于这些结构中是否有任何一种更优越,以及椎体终板对植入物完整性是否有显著贡献,几乎没有比较数据。
使用63个从T3至T12的孤立人类尸体椎体,通过电动液压测试装置在准备好的终板上直接施加轴向载荷,测试七种不同的结构。这些结构分别是:1)完整终板上的钛网笼(17×22毫米);2)完整终板上的C形肱骨;3)完整终板上呈“T形结构”的三层皮质髂骨移植;4)松质骨槽内的三层皮质髂骨移植;5)三根肋骨支撑移植;6)终板上的单根肋骨;7)松质骨体上的单根肋骨。采用双能X线吸收法评估骨矿物质含量。施加单轴载荷并收集力和位移数据,以确定椎体“失效”时的最大载荷。
保留椎体终板并不能显著增加抵抗植骨沉降的能力。钛笼结构对轴向载荷的抵抗力最大。
在重建前柱时,保留椎体终板可能不会提供显著的生物力学优势。几种替代结构在力学上是等效的。