Suppr超能文献

利用超极化氙气进行精确的磁共振测温。

Accurate MR thermometry by hyperpolarized Xe.

机构信息

Department of Applied Physical Science, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.

Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.

出版信息

Magn Reson Med. 2017 Sep;78(3):1070-1079. doi: 10.1002/mrm.26506. Epub 2016 Oct 19.

Abstract

PURPOSE

To investigate the temperature dependence of the resonance frequency of lipid-dissolved xenon (LDX) and to assess the accuracy of LDX-based MR thermometry.

METHODS

The chemical shift temperature dependence of water protons, methylene protons, and LDX was measured from samples containing tissues with varying fat contents using a high-resolution NMR spectrometer. LDX results were then used to acquire relative and absolute temperature maps in vivo and the results were compared with PRF-based MR thermometry.

RESULTS

The temperature dependence of proton resonance frequency (PRF) is strongly affected by the specific distribution of water and fat. A redistribution of water and fat compartments can reduce the apparent temperature dependence of the water chemical shift from -0.01 ppm/°C to -0.006 ppm, whereas the LDX chemical shift shows a consistent temperature dependence of -0.21 ppm/°C. The use of the methylene protons resonance frequency as internal reference improves the accuracy of LDX-based MR thermometry, but degrades that of PRF-based MR thermometry, as microscopic susceptibility gradients affected lipid and water spins differently.

CONCLUSION

The LDX resonance frequency, with its higher temperature dependence, provides more accurate and precise temperature measurements, both in vitro and in vivo. More importantly, the resonance frequency of nearby methylene protons can be used to extract absolute temperature information. Magn Reson Med 78:1070-1079, 2017. © 2016 International Society for Magnetic Resonance in Medicine.

摘要

目的

研究溶解脂质氙(LDX)的共振频率随温度的变化,并评估基于 LDX 的磁共振测温的准确性。

方法

使用高分辨率 NMR 光谱仪,从含有不同脂肪含量组织的样品中测量水质子、亚甲基质子和 LDX 的化学位移温度依赖性。然后使用 LDX 结果在体内获得相对和绝对温度图,并将结果与基于 PRF 的磁共振测温进行比较。

结果

质子共振频率(PRF)的温度依赖性受水和脂肪的特定分布强烈影响。水和脂肪隔室的重新分布可将水化学位移的表观温度依赖性从-0.01 ppm/°C 降低至-0.006 ppm/°C,而 LDX 化学位移则表现出一致的-0.21 ppm/°C 的温度依赖性。使用亚甲基质子共振频率作为内部参考可提高基于 LDX 的磁共振测温的准确性,但会降低基于 PRF 的磁共振测温的准确性,因为微观磁化率梯度会对脂质和水自旋产生不同的影响。

结论

LDX 共振频率具有更高的温度依赖性,可提供更准确和精确的体外和体内温度测量。更重要的是,附近亚甲基质子的共振频率可用于提取绝对温度信息。磁共振医学 78:1070-1079, 2017。© 2016 国际磁共振学会。

相似文献

1
Accurate MR thermometry by hyperpolarized Xe.
Magn Reson Med. 2017 Sep;78(3):1070-1079. doi: 10.1002/mrm.26506. Epub 2016 Oct 19.
2
Calibration of methylene-referenced lipid-dissolved xenon frequency for absolute MR temperature measurements.
Magn Reson Med. 2019 Feb;81(2):765-772. doi: 10.1002/mrm.27441. Epub 2018 Sep 14.
4
Magnetic resonance thermometry and its biological applications - Physical principles and practical considerations.
Prog Nucl Magn Reson Spectrosc. 2019 Feb;110:34-61. doi: 10.1016/j.pnmrs.2019.01.003. Epub 2019 Jan 31.
6
MR temperature imaging using PRF phase difference and a geometric model-based fat suppression method.
Technol Health Care. 2015;23 Suppl 2:S587-92. doi: 10.3233/THC-150997.
8
Simple and robust referencing system enables identification of dissolved-phase xenon spectral frequencies.
Magn Reson Med. 2018 Aug;80(2):431-441. doi: 10.1002/mrm.27042. Epub 2017 Dec 19.

引用本文的文献

1
RF Heating Effects in CEST NMR with Hyperpolarized Xe Considering Different Spin Exchange Kinetics and Saturation Schemes.
Chemphyschem. 2025 Apr 14;26(8):e202401037. doi: 10.1002/cphc.202401037. Epub 2025 Feb 5.
2
Absolute thermometry of human brown adipose tissue by magnetic resonance with laser polarized Xe.
Commun Med (Lond). 2023 Oct 17;3(1):147. doi: 10.1038/s43856-023-00374-x.
4
An open-source, low-cost NMR spectrometer operating in the mT field regime.
J Magn Reson. 2021 Nov;332:107076. doi: 10.1016/j.jmr.2021.107076. Epub 2021 Sep 27.
5
Multinuclear absolute magnetic resonance thermometry.
Commun Phys. 2019;2. doi: 10.1038/s42005-019-0252-3. Epub 2019 Nov 29.
6
Magnetic Resonance Imaging Techniques for Brown Adipose Tissue Detection.
Front Endocrinol (Lausanne). 2020 Aug 7;11:421. doi: 10.3389/fendo.2020.00421. eCollection 2020.
7
Comparison of single breath hyperpolarized Xe MRI with dynamic F MRI in cystic fibrosis lung disease.
Magn Reson Med. 2021 Feb;85(2):1028-1038. doi: 10.1002/mrm.28457. Epub 2020 Aug 8.
8
Opportunities and challenges in the therapeutic activation of human energy expenditure and thermogenesis to manage obesity.
J Biol Chem. 2020 Feb 14;295(7):1926-1942. doi: 10.1074/jbc.REV119.007363. Epub 2019 Dec 30.
10
Calibration of methylene-referenced lipid-dissolved xenon frequency for absolute MR temperature measurements.
Magn Reson Med. 2019 Feb;81(2):765-772. doi: 10.1002/mrm.27441. Epub 2018 Sep 14.

本文引用的文献

2
Influence of water and fat heterogeneity on fat-referenced MR thermometry.
Magn Reson Med. 2016 Mar;75(3):1187-97. doi: 10.1002/mrm.25727. Epub 2015 May 2.
3
Detection of brown adipose tissue and thermogenic activity in mice by hyperpolarized xenon MRI.
Proc Natl Acad Sci U S A. 2014 Dec 16;111(50):18001-6. doi: 10.1073/pnas.1403697111. Epub 2014 Dec 1.
5
Brown adipose tissue and its therapeutic potential.
J Intern Med. 2014 Oct;276(4):364-77. doi: 10.1111/joim.12255. Epub 2014 Apr 28.
7
In vivo T2 -based MR thermometry in adipose tissue layers for high-intensity focused ultrasound near-field monitoring.
Magn Reson Med. 2014 Oct;72(4):1057-64. doi: 10.1002/mrm.25025. Epub 2013 Nov 20.
8
MR-guided high-intensity focused ultrasound ablation of breast cancer with a dedicated breast platform.
Cardiovasc Intervent Radiol. 2013 Apr;36(2):292-301. doi: 10.1007/s00270-012-0526-6. Epub 2012 Dec 12.
10
A Constant-Volume Ventilator and Gas Recapture System for Hyperpolarized Gas MRI of Mouse and Rat Lungs.
Concepts Magn Reson Part B Magn Reson Eng. 2011 Apr;39B(2):78-88. doi: 10.1002/cmr.b.20192.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验