Suppr超能文献

利用两个大挠度形状传感器的灵巧连续体操纵器的形状跟踪

Shape Tracking of a Dexterous Continuum Manipulator Utilizing Two Large Deflection Shape Sensors.

作者信息

Liu Hao, Farvardin Amirhossein, Grupp Robert, Murphy Ryan J, Taylor Russell H, Iordachita Iulian, Armand Mehran

机构信息

State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 100080, China, and also with the Laboratory for Computational Sensing and Robotics, Johns Hopkins University, Baltimore, MD 21218 USA.

Laboratory for Computational Sensing and Robotics, Johns Hopkins University, Baltimore, MD 21218 USA.

出版信息

IEEE Sens J. 2015 Oct;15(10):5494-5503. doi: 10.1109/JSEN.2015.2442266. Epub 2015 Jun 5.

Abstract

Dexterous continuum manipulators (DCMs) can largely increase the reachable region and steerability for minimally and less invasive surgery. Many such procedures require the DCM to be capable of producing large deflections. The real-time control of the DCM shape requires sensors that accurately detect and report large deflections. We propose a novel, large deflection, shape sensor to track the shape of a 35 mm DCM designed for a less invasive treatment of osteolysis. Two shape sensors, each with three fiber Bragg grating sensing nodes is embedded within the DCM, and the sensors' distal ends fixed to the DCM. The DCM centerline is computed using the centerlines of each sensor curve. An experimental platform was built and different groups of experiments were carried out, including free bending and three cases of bending with obstacles. For each experiment, the DCM drive cable was pulled with a precise linear slide stage, the DCM centerline was calculated, and a 2D camera image was captured for verification. The reconstructed shape created with the shape sensors is compared with the ground truth generated by executing a 2D-3D registration between the camera image and 3D DCM model. Results show that the distal tip tracking accuracy is 0.40 ± 0.30 mm for the free bending and 0.61 ± 0.15 mm, 0.93 ± 0.05 mm and 0.23 ± 0.10 mm for three cases of bending with obstacles. The data suggest FBG arrays can accurately characterize the shape of large-deflection DCMs.

摘要

灵巧连续体操纵器(DCM)可以大幅增加微创手术和侵入性较小手术的可达区域及可操纵性。许多此类手术要求DCM能够产生较大的弯曲变形。DCM形状的实时控制需要能够准确检测并报告大变形的传感器。我们提出了一种新型的大变形形状传感器,用于跟踪为溶骨症微创治疗设计的35毫米DCM的形状。两个形状传感器,每个都有三个光纤布拉格光栅传感节点,被嵌入到DCM中,且传感器的远端固定在DCM上。DCM中心线通过每个传感器曲线的中心线来计算。搭建了一个实验平台,并进行了不同组的实验,包括自由弯曲和三种有障碍物时的弯曲情况。对于每个实验,用精确的线性滑动台拉动DCM驱动电缆,计算DCM中心线,并拍摄二维相机图像用于验证。将形状传感器重建的形状与通过在相机图像和三维DCM模型之间执行二维-三维配准生成的地面真值进行比较。结果表明,自由弯曲时远端尖端跟踪精度为0.40±0.30毫米,三种有障碍物时的弯曲情况分别为0.61±0.15毫米、0.93±0.05毫米和0.23±0.10毫米。数据表明光纤布拉格光栅阵列能够准确表征大变形DCM的形状。

相似文献

1
Shape Tracking of a Dexterous Continuum Manipulator Utilizing Two Large Deflection Shape Sensors.
IEEE Sens J. 2015 Oct;15(10):5494-5503. doi: 10.1109/JSEN.2015.2442266. Epub 2015 Jun 5.
2
Large Deflection Shape Sensing of a Continuum Manipulator for Minimally-Invasive Surgery.
IEEE Int Conf Robot Autom. 2015 May 26;2015:201-206. doi: 10.1109/ICRA.2015.7139000.
3
Design and Fabrication of a Fiber Bragg Grating Shape Sensor for Shape Reconstruction of a Continuum Manipulator.
IEEE Sens J. 2023 Jun 15;23(12):12915-12929. doi: 10.1109/jsen.2023.3274146. Epub 2023 May 15.
4
Robust tracking of dexterous continuum robots: Fusing FBG shape sensing and stereo vision.
Annu Int Conf IEEE Eng Med Biol Soc. 2017 Jul;2017:925-928. doi: 10.1109/EMBC.2017.8036976.
5
Mechanical Model of Dexterous Continuum Manipulators with Compliant Joints and Tendon/External Force Interactions.
IEEE ASME Trans Mechatron. 2017 Feb;22(1):465-475. doi: 10.1109/TMECH.2016.2612833. Epub 2016 Sep 22.
6
High-Resolution Optical Fiber Shape Sensing of Continuum Robots: A Comparative Study.
IEEE Int Conf Robot Autom. 2020 May-Aug;2020. doi: 10.1109/icra40945.2020.9197454. Epub 2020 Sep 15.
7
Data-driven Shape Sensing of Continuum Dexterous Manipulators Using Embedded Capacitive Sensor.
Proc IEEE Sens. 2023;2023. doi: 10.1109/sensors56945.2023.10324929. Epub 2023 Nov 28.
9
Evaluating the deflection of dexterous continuum manipulators with unevenly distributed compliant joints.
Annu Int Conf IEEE Eng Med Biol Soc. 2016 Aug;2016:5099-5102. doi: 10.1109/EMBC.2016.7591874.
10
Data-Driven Shape Sensing of a Surgical Continuum Manipulator Using an Uncalibrated Fiber Bragg Grating Sensor.
IEEE Sens J. 2021 Feb 1;21(3):3066-3076. doi: 10.1109/jsen.2020.3028208. Epub 2021 Oct 1.

引用本文的文献

1
Design and Fabrication of a Fiber Bragg Grating Shape Sensor for Shape Reconstruction of a Continuum Manipulator.
IEEE Sens J. 2023 Jun 15;23(12):12915-12929. doi: 10.1109/jsen.2023.3274146. Epub 2023 May 15.
2
A Dexterous Robotic System for Autonomous Debridement of Osteolytic Bone Lesions in Confined Spaces: Human Cadaver Studies.
IEEE Trans Robot. 2022 Apr;38(2):1213-1229. doi: 10.1109/tro.2021.3091283. Epub 2021 Jul 21.
3
Shape Reconstruction Processes for Interventional Application Devices: State of the Art, Progress, and Future Directions.
Front Robot AI. 2021 Nov 19;8:758411. doi: 10.3389/frobt.2021.758411. eCollection 2021.
4
Data-Driven Shape Sensing of a Surgical Continuum Manipulator Using an Uncalibrated Fiber Bragg Grating Sensor.
IEEE Sens J. 2021 Feb 1;21(3):3066-3076. doi: 10.1109/jsen.2020.3028208. Epub 2021 Oct 1.
5
SCADE: Simultaneous Sensor Calibration and Deformation Estimation of FBG-Equipped Unmodeled Continuum Manipulators.
IEEE Trans Robot. 2020 Feb;36(1):222-239. doi: 10.1109/tro.2019.2946726. Epub 2019 Oct 29.
6
Development and Experimental Evaluation of Concurrent Control of a Robotic Arm and Continuum Manipulator for Osteolytic Lesion Treatment.
IEEE Robot Autom Lett. 2017 Jul;2(3):1625-1631. doi: 10.1109/lra.2017.2678543. Epub 2017 Mar 6.
7
Mechanical Model of Dexterous Continuum Manipulators with Compliant Joints and Tendon/External Force Interactions.
IEEE ASME Trans Mechatron. 2017 Feb;22(1):465-475. doi: 10.1109/TMECH.2016.2612833. Epub 2016 Sep 22.
8
Vessel-based registration of an optical shape sensing catheter for MR navigation.
Int J Comput Assist Radiol Surg. 2016 Jun;11(6):1025-34. doi: 10.1007/s11548-016-1366-7. Epub 2016 Mar 16.

本文引用的文献

1
Real-Time Estimation of 3-D Needle Shape and Deflection for MRI-Guided Interventions.
IEEE ASME Trans Mechatron. 2010 Dec;15(6):906-915. doi: 10.1109/TMECH.2010.2080360.
2
Large Deflection Shape Sensing of a Continuum Manipulator for Minimally-Invasive Surgery.
IEEE Int Conf Robot Autom. 2015 May 26;2015:201-206. doi: 10.1109/ICRA.2015.7139000.
3
A submillimetric 3-DOF force sensing instrument with integrated fiber Bragg grating for retinal microsurgery.
IEEE Trans Biomed Eng. 2014 Feb;61(2):522-34. doi: 10.1109/TBME.2013.2283501.
4
Inverse Kinematics of Concentric Tube Steerable Needles.
IEEE Int Conf Robot Autom. 2007:1887-1892. doi: 10.1109/robot.2007.363597.
5
Shape sensing using multi-core fiber optic cable and parametric curve solutions.
Opt Express. 2012 Jan 30;20(3):2967-73. doi: 10.1364/OE.20.002967.
6
The quality of osteolysis grafting with cementless acetabular component retention.
Clin Orthop Relat Res. 2007 Dec;465:150-4. doi: 10.1097/BLO.0b013e3181576097.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验