Suppr超能文献

磁共振成像引导介入中三维针形状和偏转的实时估计

Real-Time Estimation of 3-D Needle Shape and Deflection for MRI-Guided Interventions.

作者信息

Park Yong-Lae, Elayaperumal Santhi, Daniel Bruce, Ryu Seok Chang, Shin Mihye, Savall Joan, Black Richard J, Moslehi Behzad, Cutkosky Mark R

机构信息

Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA.

Center for Design Research, Department of Mechanical Engineering, Stanford University, Stanford, CA 94305, USA.

出版信息

IEEE ASME Trans Mechatron. 2010 Dec;15(6):906-915. doi: 10.1109/TMECH.2010.2080360.

Abstract

We describe a MRI-compatible biopsy needle instrumented with optical fiber Bragg gratings for measuring bending deflections of the needle as it is inserted into tissues. During procedures, such as diagnostic biopsies and localized treatments, it is useful to track any tool deviation from the planned trajectory to minimize positioning errors and procedural complications. The goal is to display tool deflections in real time, with greater bandwidth and accuracy than when viewing the tool in MR images. A standard 18 ga × 15 cm inner needle is prepared using a fixture, and 350-m-deep grooves are created along its length. Optical fibers are embedded in the grooves. Two sets of sensors, located at different points along the needle, provide an estimate of the bent profile, as well as temperature compensation. Tests of the needle in a water bath showed that it produced no adverse imaging artifacts when used with the MR scanner.

摘要

我们描述了一种配备光纤布拉格光栅的磁共振成像兼容活检针,用于在针插入组织时测量其弯曲挠度。在诸如诊断活检和局部治疗等操作过程中,跟踪任何工具与计划轨迹的偏差以最小化定位误差和操作并发症是很有用的。目标是实时显示工具挠度,其带宽和准确性高于在磁共振图像中查看工具时的情况。使用夹具制备一根标准的18号×15厘米内针,并沿其长度方向加工出350微米深的凹槽。将光纤嵌入凹槽中。位于针上不同点的两组传感器可提供弯曲轮廓估计以及温度补偿。在水浴中对该针进行的测试表明,与磁共振扫描仪一起使用时,它不会产生不良成像伪影。

相似文献

1
Real-Time Estimation of 3-D Needle Shape and Deflection for MRI-Guided Interventions.
IEEE ASME Trans Mechatron. 2010 Dec;15(6):906-915. doi: 10.1109/TMECH.2010.2080360.
3
Autonomous real-time interventional scan plane control with a 3-D shape-sensing needle.
IEEE Trans Med Imaging. 2014 Nov;33(11):2128-39. doi: 10.1109/TMI.2014.2332354. Epub 2014 Jun 23.
4
MR-compatible biopsy needle with enhanced tip force sensing.
World Haptics Conf. 2013 Apr;2013:109-114. doi: 10.1109/WHC.2013.6548393.
5
Accuracy of needle position measurements using fiber Bragg gratings.
Minim Invasive Ther Allied Technol. 2012 Nov;21(6):408-14. doi: 10.3109/13645706.2012.666251. Epub 2012 Mar 29.
7
Estimating surgical needle deflection with printed strain gauges.
Annu Int Conf IEEE Eng Med Biol Soc. 2014;2014:6931-6. doi: 10.1109/EMBC.2014.6945222.
9
Optical Fiber-Based Needle Shape Sensing in Real Tissue: Single Core vs. Multicore Approaches.
J Med Robot Res. 2024 Mar-Jun;9(1-2). doi: 10.1142/s2424905x23500046. Epub 2023 Dec 1.

引用本文的文献

1
2
Unified Shape and External Load State Estimation for Continuum Robots.
IEEE Trans Robot. 2024;40:1813-1827. doi: 10.1109/tro.2024.3360950. Epub 2024 Feb 1.
3
Simulation-based Flexible Needle Control with Single-core FBG Feedback for Spinal Injections.
IEEE Trans Med Robot Bionics. 2024 Aug;6(3):1073-1083. doi: 10.1109/tmrb.2024.3421630. Epub 2024 Jul 2.
4
Optical Fiber-Based Needle Shape Sensing in Real Tissue: Single Core vs. Multicore Approaches.
J Med Robot Res. 2024 Mar-Jun;9(1-2). doi: 10.1142/s2424905x23500046. Epub 2023 Dec 1.
5
Design and Fabrication of a Fiber Bragg Grating Shape Sensor for Shape Reconstruction of a Continuum Manipulator.
IEEE Sens J. 2023 Jun 15;23(12):12915-12929. doi: 10.1109/jsen.2023.3274146. Epub 2023 May 15.
6
A Review of Recent Advancements in Sensor-Integrated Medical Tools.
Adv Sci (Weinh). 2024 May;11(20):e2307427. doi: 10.1002/advs.202307427. Epub 2024 Mar 9.
8
The Use of Tactile Sensors in Oral and Maxillofacial Surgery: An Overview.
Bioengineering (Basel). 2023 Jun 26;10(7):765. doi: 10.3390/bioengineering10070765.
9
Lie-Group Theoretic Approach to Shape-Sensing Using FBG-Sensorized Needles Including Double-Layer Tissue and S-Shape Insertions.
IEEE Sens J. 2022 Nov 15;22(22):22232-22243. doi: 10.1109/jsen.2022.3212209. Epub 2022 Oct 11.
10
State of the Art and Future Opportunities in MRI-Guided Robot-Assisted Surgery and Interventions.
Proc IEEE Inst Electr Electron Eng. 2022 Jul;110(7):968-992. doi: 10.1109/jproc.2022.3169146. Epub 2022 May 3.

本文引用的文献

1
MRI-Compatible Pneumatic Robot for Transperineal Prostate Needle Placement.
IEEE ASME Trans Mechatron. 2008 Jun 1;13(3):295-305. doi: 10.1109/TMECH.2008.924044.
2
Surgical and Interventional Robotics: Core Concepts, Technology, and Design.
IEEE Robot Autom Mag. 2008 Jun 1;15(2):122-130. doi: 10.1109/MRA.2008.926390.
3
A sub-millimetric, 0.25 mN resolution fully integrated fiber-optic force-sensing tool for retinal microsurgery.
Int J Comput Assist Radiol Surg. 2009 Jun;4(4):383-90. doi: 10.1007/s11548-009-0301-6. Epub 2009 Apr 15.
5
Dynamic MRI scan plane control for passive tracking of instruments and devices.
Med Image Comput Comput Assist Interv. 2007;10(Pt 2):50-8. doi: 10.1007/978-3-540-75759-7_7.
6
7
Needle insertion into soft tissue: a survey.
Med Eng Phys. 2007 May;29(4):413-31. doi: 10.1016/j.medengphy.2006.07.003. Epub 2006 Aug 28.
8
MR-guided breast biopsy using an active marker: a phantom study.
J Magn Reson Imaging. 2006 Jul;24(1):235-41. doi: 10.1002/jmri.20600.
9
Interactive simulation of needle insertion models.
IEEE Trans Biomed Eng. 2005 Jul;52(7):1167-79. doi: 10.1109/TBME.2005.847548.
10
Brachytherapy needle deflection evaluation and correction.
Med Phys. 2005 Apr;32(4):902-9. doi: 10.1118/1.1871372.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验