Suppr超能文献

使用未校准光纤布拉格光栅传感器的手术连续体操纵器的数据驱动形状传感

Data-Driven Shape Sensing of a Surgical Continuum Manipulator Using an Uncalibrated Fiber Bragg Grating Sensor.

作者信息

Sefati Shahriar, Gao Cong, Iordachita Iulian, Taylor Russell H, Armand Mehran

机构信息

Laboratory for Computational Sensing and Robotics, Johns Hopkins University, Baltimore, MD, USA, 21218.

Department of Orthopedic Surgery, The Johns Hopkins Medical School, Baltimore, MD, USA, 21205.

出版信息

IEEE Sens J. 2021 Feb 1;21(3):3066-3076. doi: 10.1109/jsen.2020.3028208. Epub 2021 Oct 1.

Abstract

This article proposes a data-driven learning-based approach for shape sensing and Distal-end Position Estimation (DPE) of a surgical Continuum Manipulator (CM) in constrained environments using Fiber Bragg Grating (FBG) sensors. The proposed approach uses only the sensory data from an unmodeled uncalibrated sensor embedded in the CM to estimate the shape and DPE. It serves as an alternate to the conventional mechanics-based sensor-model-dependent approach which relies on several sensor and CM geometrical assumptions. Unlike the conventional approach where the shape is reconstructed from proximal to distal end of the device, we propose a reversed approach where the distal-end position is estimated first and given this information, shape is then reconstructed from distal to proximal end. The proposed methodology yields more accurate DPE by avoiding accumulation of integration errors in conventional approaches. We study three data-driven models, namely a linear regression model, a Deep Neural Network (DNN), and a Temporal Neural Network (TNN) and compare DPE and shape reconstruction results. Additionally, we test both approaches (data-driven and model-dependent) against internal and external disturbances to the CM and its environment such as incorporation of flexible medical instruments into the CM and contacts with obstacles in taskspace. Using the data-driven (DNN) and model-dependent approaches, the following max absolute errors are observed for DPE: 0.78 mm and 2.45 mm in free bending motion, 0.11 mm and 3.20 mm with flexible instruments, and 1.22 mm and 3.19 mm with taskspace obstacles, indicating superior performance of the proposed data-driven approach compared to the conventional approaches.

摘要

本文提出了一种基于数据驱动学习的方法,用于在受限环境中使用光纤布拉格光栅(FBG)传感器对手术连续体操纵器(CM)进行形状感知和远端位置估计(DPE)。所提出的方法仅使用嵌入在CM中的未建模、未校准传感器的传感数据来估计形状和DPE。它是传统的基于力学的传感器模型依赖方法的替代方法,传统方法依赖于几个传感器和CM几何假设。与从设备近端到远端重建形状的传统方法不同,我们提出了一种反向方法,即首先估计远端位置,并根据此信息从远端到近端重建形状。所提出的方法通过避免传统方法中积分误差的积累,产生更准确的DPE。我们研究了三种数据驱动模型,即线性回归模型、深度神经网络(DNN)和时间神经网络(TNN),并比较了DPE和形状重建结果。此外,我们针对CM及其环境的内部和外部干扰测试了两种方法(数据驱动和模型依赖),例如将柔性医疗器械纳入CM以及在任务空间中与障碍物接触。使用数据驱动(DNN)和模型依赖方法,在DPE方面观察到以下最大绝对误差:自由弯曲运动中为0.78毫米和2.45毫米,使用柔性器械时为0.11毫米和3.20毫米,遇到任务空间障碍物时为1.22毫米和3.19毫米,这表明所提出的数据驱动方法比传统方法具有更好的性能。

相似文献

1
Data-Driven Shape Sensing of a Surgical Continuum Manipulator Using an Uncalibrated Fiber Bragg Grating Sensor.
IEEE Sens J. 2021 Feb 1;21(3):3066-3076. doi: 10.1109/jsen.2020.3028208. Epub 2021 Oct 1.
2
Design and Fabrication of a Fiber Bragg Grating Shape Sensor for Shape Reconstruction of a Continuum Manipulator.
IEEE Sens J. 2023 Jun 15;23(12):12915-12929. doi: 10.1109/jsen.2023.3274146. Epub 2023 May 15.
3
Data-driven Shape Sensing of Continuum Dexterous Manipulators Using Embedded Capacitive Sensor.
Proc IEEE Sens. 2023;2023. doi: 10.1109/sensors56945.2023.10324929. Epub 2023 Nov 28.
4
SCADE: Simultaneous Sensor Calibration and Deformation Estimation of FBG-Equipped Unmodeled Continuum Manipulators.
IEEE Trans Robot. 2020 Feb;36(1):222-239. doi: 10.1109/tro.2019.2946726. Epub 2019 Oct 29.
5
Shape Tracking of a Dexterous Continuum Manipulator Utilizing Two Large Deflection Shape Sensors.
IEEE Sens J. 2015 Oct;15(10):5494-5503. doi: 10.1109/JSEN.2015.2442266. Epub 2015 Jun 5.
7
High-Resolution Optical Fiber Shape Sensing of Continuum Robots: A Comparative Study.
IEEE Int Conf Robot Autom. 2020 May-Aug;2020. doi: 10.1109/icra40945.2020.9197454. Epub 2020 Sep 15.
8
Adaptive Online Learning and Robust 3-D Shape Servoing of Continuum and Soft Robots in Unstructured Environments.
Soft Robot. 2024 Apr;11(2):320-337. doi: 10.1089/soro.2022.0158. Epub 2024 Feb 6.
9
Large Deflection Shape Sensing of a Continuum Manipulator for Minimally-Invasive Surgery.
IEEE Int Conf Robot Autom. 2015 May 26;2015:201-206. doi: 10.1109/ICRA.2015.7139000.
10
Shape Reconstruction of Extensible Continuum Manipulator Based on Soft Sensors.
Soft Robot. 2024 Dec;11(6):994-1007. doi: 10.1089/soro.2023.0094. Epub 2024 May 23.

引用本文的文献

1
Data-driven Shape Sensing of Continuum Dexterous Manipulators Using Embedded Capacitive Sensor.
Proc IEEE Sens. 2023;2023. doi: 10.1109/sensors56945.2023.10324929. Epub 2023 Nov 28.
2
Design and Fabrication of a Fiber Bragg Grating Shape Sensor for Shape Reconstruction of a Continuum Manipulator.
IEEE Sens J. 2023 Jun 15;23(12):12915-12929. doi: 10.1109/jsen.2023.3274146. Epub 2023 May 15.
3
A Novel Catheter Shape-Sensing Method Based on Deep Learning with a Multi-Core Optical Fiber.
Sensors (Basel). 2023 Aug 18;23(16):7243. doi: 10.3390/s23167243.
4
FOSS-Based Method for Thin-Walled Structure Deformation Perception and Shape Reconstruction.
Micromachines (Basel). 2023 Mar 31;14(4):794. doi: 10.3390/mi14040794.
5
Deformation Monitoring and Shape Reconstruction of Flexible Planer Structures Based on FBG.
Micromachines (Basel). 2022 Jul 31;13(8):1237. doi: 10.3390/mi13081237.
6
A Dexterous Robotic System for Autonomous Debridement of Osteolytic Bone Lesions in Confined Spaces: Human Cadaver Studies.
IEEE Trans Robot. 2022 Apr;38(2):1213-1229. doi: 10.1109/tro.2021.3091283. Epub 2021 Jul 21.
7
Shape Reconstruction Processes for Interventional Application Devices: State of the Art, Progress, and Future Directions.
Front Robot AI. 2021 Nov 19;8:758411. doi: 10.3389/frobt.2021.758411. eCollection 2021.
8
Fluoroscopic Navigation for a Surgical Robotic System Including a Continuum Manipulator.
IEEE Trans Biomed Eng. 2022 Jan;69(1):453-464. doi: 10.1109/TBME.2021.3097631. Epub 2021 Dec 24.
9
An Active Steering Hand-held Robotic System for Minimally Invasive Orthopaedic Surgery Using a Continuum Manipulator.
IEEE Robot Autom Lett. 2021 Apr;6(2):1622-1629. doi: 10.1109/lra.2021.3059634. Epub 2021 Feb 16.

本文引用的文献

1
High-Resolution Optical Fiber Shape Sensing of Continuum Robots: A Comparative Study.
IEEE Int Conf Robot Autom. 2020 May-Aug;2020. doi: 10.1109/icra40945.2020.9197454. Epub 2020 Sep 15.
2
Towards FBG-Based Shape Sensing for Micro-scale and Meso-Scale Continuum Robots with Large Deflection.
IEEE Robot Autom Lett. 2020 Apr;5(2):1712-1719. doi: 10.1109/lra.2020.2969934. Epub 2020 Jan 28.
3
A Deep Supervised Learning Framework for Data-Driven Soft Sensor Modeling of Industrial Processes.
IEEE Trans Neural Netw Learn Syst. 2020 Nov;31(11):4737-4746. doi: 10.1109/TNNLS.2019.2957366. Epub 2020 Oct 30.
4
3-DOF Force-Sensing Motorized Micro-Forceps for Robot-Assisted Vitreoretinal Surgery.
IEEE Sens J. 2017 Jun 1;17(11):3526-3541. doi: 10.1109/JSEN.2017.2694965. Epub 2017 Apr 18.
5
Shape Sensing Techniques for Continuum Robots in Minimally Invasive Surgery: A Survey.
IEEE Trans Biomed Eng. 2017 Aug;64(8):1665-1678. doi: 10.1109/TBME.2016.2622361. Epub 2016 Oct 27.
6
Shape Tracking of a Dexterous Continuum Manipulator Utilizing Two Large Deflection Shape Sensors.
IEEE Sens J. 2015 Oct;15(10):5494-5503. doi: 10.1109/JSEN.2015.2442266. Epub 2015 Jun 5.
7
Effects of tools inserted through snake-like surgical manipulators.
Annu Int Conf IEEE Eng Med Biol Soc. 2014;2014:6854-8. doi: 10.1109/EMBC.2014.6945203.
8
Flexible robotics.
BJU Int. 2011 Jan;107(2):187-9. doi: 10.1111/j.1464-410X.2010.09886.x.
9
A sub-millimetric, 0.25 mN resolution fully integrated fiber-optic force-sensing tool for retinal microsurgery.
Int J Comput Assist Radiol Surg. 2009 Jun;4(4):383-90. doi: 10.1007/s11548-009-0301-6. Epub 2009 Apr 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验