Suppr超能文献

斑马鱼幼体中的扫视和扫视后眼球非共轭性表明眼球运动控制是独立的。

Saccadic and Postsaccadic Disconjugacy in Zebrafish Larvae Suggests Independent Eye Movement Control.

作者信息

Chen Chien-Cheng, Bockisch Christopher J, Straumann Dominik, Huang Melody Ying-Yu

机构信息

Department of Neurology, University Hospital Zurich, University of ZurichZurich, Switzerland; PhD Program in Integrative Molecular Medicine, Life Science Graduate School, University of ZurichZurich, Switzerland.

Department of Neurology, University Hospital Zurich, University of ZurichZurich, Switzerland; Department of Ophthalmology, University Hospital Zurich, University of ZurichZurich, Switzerland; Department of Otorhinolaryngology, University Hospital Zurich, University of ZurichZurich, Switzerland.

出版信息

Front Syst Neurosci. 2016 Oct 5;10:80. doi: 10.3389/fnsys.2016.00080. eCollection 2016.

Abstract

Spontaneous eye movements of zebrafish larvae in the dark consist of centrifugal saccades that move the eyes from a central to an eccentric position and postsaccadic centripetal drifts. In a previous study, we showed that the fitted single-exponential time constants of the postsaccadic drifts are longer in the temporal-to-nasal (T->N) direction than in the nasal-to-temporal (N->T) direction. In the present study, we further report that saccadic peak velocities are higher and saccadic amplitudes are larger in the N->T direction than in the T->N direction. We investigated the underlying mechanism of this ocular disconjugacy in the dark with a top-down approach. A mathematic ocular motor model, including an eye plant, a set of burst neurons and a velocity-to-position neural integrator (VPNI), was built to simulate the typical larval eye movements in the dark. The modeling parameters, such as VPNI time constants, neural impulse signals generated by the burst neurons and time constants of the eye plant, were iteratively adjusted to fit the average saccadic eye movement. These simulations suggest that four pools of burst neurons and four pools of VPNIs are needed to explain the disconjugate eye movements in our results. A premotor mechanism controls the synchronous timing of binocular saccades, but the pools of burst and integrator neurons in zebrafish larvae seem to be different (and maybe separate) for both eyes and horizontal directions, which leads to the observed ocular disconjugacies during saccades and postsaccadic drifts in the dark.

摘要

斑马鱼幼体在黑暗中的自发眼动由离心扫视组成,这些扫视将眼睛从中央位置移动到偏心位置,以及扫视后的向心漂移。在之前的一项研究中,我们表明,扫视后漂移的拟合单指数时间常数在颞侧到鼻侧(T->N)方向比在鼻侧到颞侧(N->T)方向更长。在本研究中,我们进一步报告,N->T方向的扫视峰值速度更高,扫视幅度比T->N方向更大。我们采用自上而下的方法研究了黑暗中这种眼动非共轭性的潜在机制。构建了一个数学眼动模型,包括眼动装置、一组爆发神经元和速度到位置神经积分器(VPNI),以模拟黑暗中典型的幼体眼动。对建模参数,如VPNI时间常数、爆发神经元产生的神经冲动信号和眼动装置的时间常数进行迭代调整,以拟合平均扫视眼动。这些模拟表明,需要四组爆发神经元和四组VPNI来解释我们结果中的非共轭眼动。一种运动前机制控制双眼扫视的同步时间,但斑马鱼幼体中爆发神经元池和积分神经元池在双眼和水平方向似乎是不同的(可能是分开的),这导致在黑暗中扫视和扫视后漂移期间观察到的眼动非共轭性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5cbe/5050213/aef8d315db7b/fnsys-10-00080-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验