Yin Yushu, Papavasiliou Georgia, Zaborina Olga Y, Alverdy John C, Teymour Fouad
Department of Chemical and Biological Engineering, Illinois Institute of Technology, Chicago, IL, USA.
Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL, USA.
Ann Biomed Eng. 2017 Apr;45(4):1058-1068. doi: 10.1007/s10439-016-1740-1. Epub 2016 Oct 19.
The human gastrointestinal tract is the primary site of colonization of multidrug resistant pathogens and the major source of life-threatening complications in critically ill and immunocompromised patients. Eradication measures using antibiotics carry further risk of antibiotic resistance. Furthermore, antibiotic treatment can adversely shift the intestinal microbiome toward domination by resistant pathogens. Therefore, approaches directed to prevent replacement of health promoting microbiota with resistant pathogens should be developed. The use of non-microbicidal drugs to create microenvironmental conditions that suppress virulence of pathogens is an attractive strategy to minimize the negative consequences of intestinal microbiome disruption. We have previously shown that phosphate is depleted in the intestinal tract following surgical injury, that this depletion is a major "cue" that triggers bacterial virulence, and that the maintenance of phosphate abundance prevents virulence expression. However, the use of inorganic phosphate may not be a suitable agent to deliver to the site of the host-pathogen interaction since it is readily adsorbed in small intestine. Here we propose a novel drug delivery approach that exploits the use of nanoparticles that allow for prolonged release of phosphates. We have synthesized phosphate (Pi) and polyphosphate (PPi) crosslinked poly (ethylene) glycol (PEG) hydrogel nanoparticles (NP-Pi and NP-PPi, respectively) that result in sustained delivery of Pi and PPi. NP-PPi demonstrated more prolonged release of PPi as compared to the release of Pi from NP-Pi. In vitro studies indicate that free PPi as well NP-PPi are effective compounds for suppressing pyoverdin and pyocyanin production, two global virulence systems of virulence of P. aeruginosa. These studies suggest that sustained release of polyphosphate from NP-PPi can be exploited as a target for virulence suppression of lethal pathogenic phenotypes in the gastrointestinal tract.
人类胃肠道是多重耐药病原体的主要定植部位,也是重症和免疫功能低下患者危及生命并发症的主要来源。使用抗生素的根除措施会带来进一步的抗生素耐药风险。此外,抗生素治疗会不利地使肠道微生物群向耐药病原体主导的方向转变。因此,应开发旨在防止促进健康的微生物群被耐药病原体取代的方法。使用非杀菌药物来创造抑制病原体毒力的微环境条件,是将肠道微生物群破坏的负面影响降至最低的一种有吸引力的策略。我们之前已经表明,手术损伤后肠道中的磷酸盐会被耗尽,这种耗尽是触发细菌毒力的主要“信号”,而维持磷酸盐的充足可以防止毒力表达。然而,使用无机磷酸盐可能不是递送至宿主 - 病原体相互作用部位的合适药物,因为它很容易在小肠中被吸附。在此,我们提出一种新型药物递送方法,该方法利用纳米颗粒实现磷酸盐的长效释放。我们已经合成了磷酸盐(Pi)和多磷酸盐(PPi)交联的聚乙二醇(PEG)水凝胶纳米颗粒(分别为NP - Pi和NP - PPi),它们能够持续递送Pi和PPi。与NP - Pi中Pi的释放相比,NP - PPi显示出PPi的释放更持久。体外研究表明,游离的PPi以及NP - PPi都是抑制绿脓菌素和绿脓青素产生的有效化合物,这两种物质是铜绿假单胞菌毒力的两个全局毒力系统。这些研究表明,NP - PPi中多磷酸盐的持续释放可被用作抑制胃肠道中致死性致病表型毒力的靶点。