Suppr超能文献

以铜绿假单胞菌作为肠道病原菌模型,靶向绿脓菌素和绿脓荧光素生成的聚磷酸负载聚乙二醇水凝胶纳米颗粒的从头合成及功能分析

De Novo Synthesis and Functional Analysis of Polyphosphate-Loaded Poly(Ethylene) Glycol Hydrogel Nanoparticles Targeting Pyocyanin and Pyoverdin Production in Pseudomonas aeruginosa as a Model Intestinal Pathogen.

作者信息

Yin Yushu, Papavasiliou Georgia, Zaborina Olga Y, Alverdy John C, Teymour Fouad

机构信息

Department of Chemical and Biological Engineering, Illinois Institute of Technology, Chicago, IL, USA.

Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL, USA.

出版信息

Ann Biomed Eng. 2017 Apr;45(4):1058-1068. doi: 10.1007/s10439-016-1740-1. Epub 2016 Oct 19.

Abstract

The human gastrointestinal tract is the primary site of colonization of multidrug resistant pathogens and the major source of life-threatening complications in critically ill and immunocompromised patients. Eradication measures using antibiotics carry further risk of antibiotic resistance. Furthermore, antibiotic treatment can adversely shift the intestinal microbiome toward domination by resistant pathogens. Therefore, approaches directed to prevent replacement of health promoting microbiota with resistant pathogens should be developed. The use of non-microbicidal drugs to create microenvironmental conditions that suppress virulence of pathogens is an attractive strategy to minimize the negative consequences of intestinal microbiome disruption. We have previously shown that phosphate is depleted in the intestinal tract following surgical injury, that this depletion is a major "cue" that triggers bacterial virulence, and that the maintenance of phosphate abundance prevents virulence expression. However, the use of inorganic phosphate may not be a suitable agent to deliver to the site of the host-pathogen interaction since it is readily adsorbed in small intestine. Here we propose a novel drug delivery approach that exploits the use of nanoparticles that allow for prolonged release of phosphates. We have synthesized phosphate (Pi) and polyphosphate (PPi) crosslinked poly (ethylene) glycol (PEG) hydrogel nanoparticles (NP-Pi and NP-PPi, respectively) that result in sustained delivery of Pi and PPi. NP-PPi demonstrated more prolonged release of PPi as compared to the release of Pi from NP-Pi. In vitro studies indicate that free PPi as well NP-PPi are effective compounds for suppressing pyoverdin and pyocyanin production, two global virulence systems of virulence of P. aeruginosa. These studies suggest that sustained release of polyphosphate from NP-PPi can be exploited as a target for virulence suppression of lethal pathogenic phenotypes in the gastrointestinal tract.

摘要

人类胃肠道是多重耐药病原体的主要定植部位,也是重症和免疫功能低下患者危及生命并发症的主要来源。使用抗生素的根除措施会带来进一步的抗生素耐药风险。此外,抗生素治疗会不利地使肠道微生物群向耐药病原体主导的方向转变。因此,应开发旨在防止促进健康的微生物群被耐药病原体取代的方法。使用非杀菌药物来创造抑制病原体毒力的微环境条件,是将肠道微生物群破坏的负面影响降至最低的一种有吸引力的策略。我们之前已经表明,手术损伤后肠道中的磷酸盐会被耗尽,这种耗尽是触发细菌毒力的主要“信号”,而维持磷酸盐的充足可以防止毒力表达。然而,使用无机磷酸盐可能不是递送至宿主 - 病原体相互作用部位的合适药物,因为它很容易在小肠中被吸附。在此,我们提出一种新型药物递送方法,该方法利用纳米颗粒实现磷酸盐的长效释放。我们已经合成了磷酸盐(Pi)和多磷酸盐(PPi)交联的聚乙二醇(PEG)水凝胶纳米颗粒(分别为NP - Pi和NP - PPi),它们能够持续递送Pi和PPi。与NP - Pi中Pi的释放相比,NP - PPi显示出PPi的释放更持久。体外研究表明,游离的PPi以及NP - PPi都是抑制绿脓菌素和绿脓青素产生的有效化合物,这两种物质是铜绿假单胞菌毒力的两个全局毒力系统。这些研究表明,NP - PPi中多磷酸盐的持续释放可被用作抑制胃肠道中致死性致病表型毒力的靶点。

相似文献

2
Sustained Release of Phosphates From Hydrogel Nanoparticles Suppresses Bacterial Collagenase and Biofilm Formation .
Front Bioeng Biotechnol. 2019 Jun 26;7:153. doi: 10.3389/fbioe.2019.00153. eCollection 2019.
3
Phosphate-containing polyethylene glycol polymers prevent lethal sepsis by multidrug-resistant pathogens.
Antimicrob Agents Chemother. 2014;58(2):966-77. doi: 10.1128/AAC.02183-13. Epub 2013 Nov 25.
6
Reduction of virulence factor pyocyanin production in multidrug-resistant Pseudomonas aeruginosa.
J Infect Chemother. 2013 Feb;19(1):82-8. doi: 10.1007/s10156-012-0457-9. Epub 2012 Aug 3.
8
Virulence Induction in Pseudomonas aeruginosa under Inorganic Phosphate Limitation: a Proteomics Perspective.
Microbiol Spectr. 2022 Dec 21;10(6):e0259022. doi: 10.1128/spectrum.02590-22. Epub 2022 Nov 10.
10
Impact of glycerol-3-phosphate dehydrogenase on virulence factor production by Pseudomonas aeruginosa.
Can J Microbiol. 2014 Dec;60(12):857-63. doi: 10.1139/cjm-2014-0485.

引用本文的文献

2
Polymer-Based Hydrogels Applied in Drug Delivery: An Overview.
Gels. 2023 Jun 27;9(7):523. doi: 10.3390/gels9070523.
3
5
Colour Me Blue: The History and the Biotechnological Potential of Pyocyanin.
Molecules. 2021 Feb 10;26(4):927. doi: 10.3390/molecules26040927.
6
Nano-Based Drug Delivery or Targeting to Eradicate Bacteria for Infection Mitigation: A Review of Recent Advances.
Front Chem. 2020 Apr 24;8:286. doi: 10.3389/fchem.2020.00286. eCollection 2020.
7
Sustained Release of Phosphates From Hydrogel Nanoparticles Suppresses Bacterial Collagenase and Biofilm Formation .
Front Bioeng Biotechnol. 2019 Jun 26;7:153. doi: 10.3389/fbioe.2019.00153. eCollection 2019.

本文引用的文献

1
Antimicrobial prophylaxis for colorectal surgery.
Cochrane Database Syst Rev. 2014 May 9;2014(5):CD001181. doi: 10.1002/14651858.CD001181.pub4.
2
Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences.
Nat Biotechnol. 2013 Sep;31(9):814-21. doi: 10.1038/nbt.2676. Epub 2013 Aug 25.
3
Phosphate starvation relayed by PhoB activates the expression of the Pseudomonas aeruginosa σvreI ECF factor and its target genes.
Microbiology (Reading). 2013 Jul;159(Pt 7):1315-1327. doi: 10.1099/mic.0.067645-0. Epub 2013 May 8.
4
The gut is the epicentre of antibiotic resistance.
Antimicrob Resist Infect Control. 2012 Nov 27;1(1):39. doi: 10.1186/2047-2994-1-39.
6
Mucus-penetrating nanoparticles for vaginal drug delivery protect against herpes simplex virus.
Sci Transl Med. 2012 Jun 13;4(138):138ra79. doi: 10.1126/scitranslmed.3003453.
7
Size- and charge-dependent non-specific uptake of PEGylated nanoparticles by macrophages.
Int J Nanomedicine. 2012;7:799-813. doi: 10.2147/IJN.S28531. Epub 2012 Feb 15.
10
Combinatorial activities of ionic silver and sodium hexametaphosphate against microorganisms associated with chronic wounds.
J Antimicrob Chemother. 2011 Nov;66(11):2556-61. doi: 10.1093/jac/dkr350. Epub 2011 Aug 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验