Suppr超能文献

基于立体相机传感器的局部不变特征结构匹配的视觉里程计。

Visual odometry based on structural matching of local invariant features using stereo camera sensor.

机构信息

Departamento de Tecnología de los Computadores y las Comunicaciones, University of Extremadura, Escuela Politécnica, Avda. Universidad s/n, 10071 Cáceres, Spain.

出版信息

Sensors (Basel). 2011;11(7):7262-84. doi: 10.3390/s110707262. Epub 2011 Jul 18.

Abstract

This paper describes a novel sensor system to estimate the motion of a stereo camera. Local invariant image features are matched between pairs of frames and linked into image trajectories at video rate, providing the so-called visual odometry, i.e., motion estimates from visual input alone. Our proposal conducts two matching sessions: the first one between sets of features associated to the images of the stereo pairs and the second one between sets of features associated to consecutive frames. With respect to previously proposed approaches, the main novelty of this proposal is that both matching algorithms are conducted by means of a fast matching algorithm which combines absolute and relative feature constraints. Finding the largest-valued set of mutually consistent matches is equivalent to finding the maximum-weighted clique on a graph. The stereo matching allows to represent the scene view as a graph which emerge from the features of the accepted clique. On the other hand, the frame-to-frame matching defines a graph whose vertices are features in 3D space. The efficiency of the approach is increased by minimizing the geometric and algebraic errors to estimate the final displacement of the stereo camera between consecutive acquired frames. The proposed approach has been tested for mobile robotics navigation purposes in real environments and using different features. Experimental results demonstrate the performance of the proposal, which could be applied in both industrial and service robot fields.

摘要

本文描述了一种新颖的传感器系统,用于估计立体相机的运动。在视频速率下,通过在帧对之间匹配局部不变的图像特征并将其链接到图像轨迹,提供所谓的视觉里程计,即仅从视觉输入估计运动。我们的提案进行了两次匹配会话:第一次是在立体对的图像相关联的特征集之间进行,第二次是在连续帧的特征集之间进行。与之前提出的方法相比,本提案的主要新颖之处在于,两种匹配算法都通过一种快速匹配算法进行,该算法结合了绝对和相对特征约束。找到最大相互一致匹配集相当于在图上找到最大权团。立体匹配允许将场景视图表示为从接受的团集中的特征出现的图。另一方面,帧到帧的匹配定义了一个图,其顶点是 3D 空间中的特征。通过最小化估计立体相机在连续采集帧之间的最终位移的几何和代数误差,可以提高方法的效率。该方法已在真实环境中针对移动机器人导航目的并使用不同的特征进行了测试。实验结果证明了该方法的性能,该方法可应用于工业和服务机器人领域。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2a1c/3231658/aa6670904388/sensors-11-07262f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验