Zhang H E, Ye Cang
Computer Science Department, Virginia Commonwealth University, Richmond, VA 23284, USA.
IEEE Access. 2020;8:90042-90051. doi: 10.1109/access.2020.2994299. Epub 2020 May 12.
The classic visual-inertial odometry (VIO) method estimates the 6-DOF pose of a moving camera by fusing the camera's ego-motion estimated by visual odometry (VO) and the motion measured by an inertial measurement unit (IMU). The VIO attempts to updates the estimates of the IMU's biases at each step by using the VO's output to improve the accuracy of IMU measurement. This approach works only if an accurate VO output can be identified and used. However, there is no reliable method that can be used to perform an online evaluation of the accuracy of the VO. In this paper, a new VIO method is introduced for pose estimation of a robotic navigation aid (RNA) that uses a 3D time-of-flight camera for assistive navigation. The method, called plane-aided visual-inertial odometry (PAVIO), extracts planes from the 3D point cloud of the current camera view and track them onto the next camera view by using the IMU's measurement. The covariance matrix of each tracked plane's parameters is computed and used to perform a plane consistent check based on a chi-square test to evaluate the accuracy of VO's output. PAVIO accepts a VO output only if it is accurate. The accepted VO outputs, the information of the extracted planes, and the IMU's measurements over time are used to create a factor graph. By optimizing the graph, the method improves the accuracy in estimating the IMU bias and reduces the camera's pose error. Experimental results with the RNA validate the effectiveness of the proposed method. PAVIO can be used to estimate the 6-DOF pose for any 3D-camera-based visual-inertial navigation system.
经典的视觉惯性里程计(VIO)方法通过融合视觉里程计(VO)估计的相机自身运动和惯性测量单元(IMU)测量的运动来估计移动相机的6自由度位姿。VIO试图通过使用VO的输出来在每一步更新IMU偏差的估计值,以提高IMU测量的准确性。只有在能够识别并使用准确的VO输出时,这种方法才有效。然而,目前还没有可靠的方法可用于对VO的准确性进行在线评估。本文介绍了一种新的VIO方法,用于机器人导航辅助设备(RNA)的位姿估计,该设备使用3D飞行时间相机进行辅助导航。该方法称为平面辅助视觉惯性里程计(PAVIO),它从当前相机视图的3D点云中提取平面,并利用IMU的测量将其跟踪到下一个相机视图。计算每个跟踪平面参数的协方差矩阵,并基于卡方检验进行平面一致性检查,以评估VO输出的准确性。只有当VO输出准确时,PAVIO才会接受它。接受的VO输出、提取平面的信息以及IMU随时间的测量值用于创建一个因子图。通过优化该图,该方法提高了估计IMU偏差的准确性,并减少了相机的位姿误差。RNA的实验结果验证了所提方法的有效性。PAVIO可用于估计任何基于3D相机的视觉惯性导航系统的6自由度位姿。