Suppr超能文献

通过剂量反应模型中报告的病例数对伯氏考克斯氏体病爆发暴露进行空间预测。

Spatial Prediction of Coxiella burnetii Outbreak Exposure via Notified Case Counts in a Dose-Response Model.

作者信息

Brooke Russell J, Kretzschmar Mirjam E E, Hackert Volker, Hoebe Christian J P A, Teunis Peter F M, Waller Lance A

机构信息

From the aJulius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands; bCentre for Infectious, Disease Control, RIVM, Bilthoven, The Netherlands; cDepartment of Sexual Health, Infectious Diseases, and Environmental Health, South Limburg Public Health Service, Heerlen, The Netherlands; dDepartment of Medical Microbiology, School of Public Health and Primary Care, Maastricht University Medical Center, Maastricht, The Netherlands; eHubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA; and fDepartment of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA.

出版信息

Epidemiology. 2017 Jan;28(1):127-135. doi: 10.1097/EDE.0000000000000574.

Abstract

We develop a novel approach to study an outbreak of Q fever in 2009 in the Netherlands by combining a human dose-response model with geostatistics prediction to relate probability of infection and associated probability of illness to an effective dose of Coxiella burnetii. The spatial distribution of the 220 notified cases in the at-risk population are translated into a smooth spatial field of dose. Based on these symptomatic cases, the dose-response model predicts a median of 611 asymptomatic infections (95% range: 410, 1,084) for the 220 reported symptomatic cases in the at-risk population; 2.78 (95% range: 1.86, 4.93) asymptomatic infections for each reported case. The low attack rates observed during the outbreak range from (Equation is included in full-text article.)to (Equation is included in full-text article.). The estimated peak levels of exposure extend to the north-east from the point source with an increasing proportion of asymptomatic infections further from the source. Our work combines established methodology from model-based geostatistics and dose-response modeling allowing for a novel approach to study outbreaks. Unobserved infections and the spatially varying effective dose can be predicted using the flexible framework without assuming any underlying spatial structure of the outbreak process. Such predictions are important for targeting interventions during an outbreak, estimating future disease burden, and determining acceptable risk levels.

摘要

我们开发了一种新方法,通过将人类剂量反应模型与地统计学预测相结合,来研究2009年荷兰Q热疫情,以便将感染概率和相关发病概率与伯氏考克斯氏体的有效剂量联系起来。将高危人群中220例通报病例的空间分布转化为剂量的平滑空间场。基于这些有症状病例,剂量反应模型预测,高危人群中220例报告的有症状病例有611例无症状感染(95%范围:410,1084);每例报告病例有2.78例(95%范围:1.86,4.93)无症状感染。疫情期间观察到的低发病率范围为(完整文章中包含公式)至(完整文章中包含公式)。估计的暴露峰值水平从点源向东北延伸,离源越远无症状感染比例越高。我们的工作结合了基于模型的地统计学和剂量反应建模的既定方法,从而提供了一种研究疫情的新方法。使用灵活框架可以预测未观察到的感染和空间变化的有效剂量,而无需假设疫情过程的任何潜在空间结构。此类预测对于疫情期间的干预目标设定、估计未来疾病负担以及确定可接受的风险水平非常重要。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验