León-Roque Noemí, Abderrahim Mohamed, Nuñez-Alejos Luis, Arribas Silvia M, Condezo-Hoyos Luis
Universidad Nacional Pedro Ruiz Gallo, Facultad de Ingeniería Química e Industrias Alimentarias, Departamento de Ingeniería en Industrias Alimentarias, Lambayeque, Perú.
Universidad Carlos III de Madrid, Departamento de Ingeniería de Sistemas y Automática, Leganés, Madrid, Spain.
Talanta. 2016 Dec 1;161:31-39. doi: 10.1016/j.talanta.2016.08.022. Epub 2016 Aug 5.
Several procedures are currently used to assess fermentation index (FI) of cocoa beans (Theobroma cacao L.) for quality control. However, all of them present several drawbacks. The aim of the present work was to develop and validate a simple image based quantitative procedure, using color measurement and artificial neural network (ANNs). ANN models based on color measurements were tested to predict fermentation index (FI) of fermented cocoa beans. The RGB values were measured from surface and center region of fermented beans in images obtained by camera and desktop scanner. The FI was defined as the ratio of total free amino acids in fermented versus non-fermented samples. The ANN model that included RGB color measurement of fermented cocoa surface and R/G ratio in cocoa bean of alkaline extracts was able to predict FI with no statistical difference compared with the experimental values. Performance of the ANN model was evaluated by the coefficient of determination, Bland-Altman plot and Passing-Bablok regression analyses. Moreover, in fermented beans, total sugar content and titratable acidity showed a similar pattern to the total free amino acid predicted through the color based ANN model. The results of the present work demonstrate that the proposed ANN model can be adopted as a low-cost and in situ procedure to predict FI in fermented cocoa beans through apps developed for mobile device.
目前有几种程序用于评估可可豆(Theobroma cacao L.)的发酵指数(FI)以进行质量控制。然而,它们都存在一些缺点。本研究的目的是开发并验证一种基于图像的简单定量程序,使用颜色测量和人工神经网络(ANNs)。测试了基于颜色测量的ANN模型来预测发酵可可豆的发酵指数(FI)。通过相机和台式扫描仪获得的图像中,测量发酵豆表面和中心区域的RGB值。FI定义为发酵样品与未发酵样品中总游离氨基酸的比率。包含发酵可可表面的RGB颜色测量和碱性提取物可可豆中R/G比率的ANN模型能够预测FI,与实验值相比无统计学差异。通过决定系数、Bland-Altman图和Passing-Bablok回归分析评估ANN模型的性能。此外,在发酵豆中,总糖含量和可滴定酸度与通过基于颜色的ANN模型预测的总游离氨基酸呈现相似模式。本研究结果表明,所提出的ANN模型可作为一种低成本的原位程序,通过为移动设备开发的应用程序来预测发酵可可豆中的FI。