Tarafdar Ayon, Kaur Barjinder Pal
Food Engineering Lab, Department of Food Engineering, National Institute of Food Technology Entrepreneurship and Management, Kundli, Sonipat, Haryana 131 028 India.
Livestock Production and Management Section, ICAR-Indian Veterinary Research Institute, Izzatnagar, Bareilly, Uttar Pradesh 243 122 India.
J Food Sci Technol. 2024 Nov;61(11):2215-2221. doi: 10.1007/s13197-024-05994-2. Epub 2024 May 27.
This investigation employed different ANN infrastructures for predicting the quality of sugarcane juice under varying microfluidization pressures (50-200 MPa) and cycles (1-7) which was previously unexplored. Two hidden layer (HL) activation functions (tansigmoid, logsigmoid) and learning algorithms (LM, GDX) with varying hidden layer neurons (HLNs) were tested to predict the color, total phenol content, total flavonoid content, chlorophyll content, total and reducing sugars, polyphenol oxidase activity, peroxidase activity, sucrose neutral invertase activity, aerobic plate count, yeast and mold count, particle size, sensory score and sedimentation rate of sugarcane juice under different microfluidization processing conditions. Results showed that the combination of LM + logsigmoid, GDX + logsigmoid and GDX + tansigmoid produced > 90% prediction accuracy. Among these models, GDX + tansigmoid exhibited 91.7% accuracy on training, and 96% accuracy on testing using relatively lower number of neurons (10 HLNs), and was therefore selected to predict the quality characteristics of sugarcane juice.
The online version contains supplementary material available at 10.1007/s13197-024-05994-2.
本研究采用了不同的人工神经网络(ANN)架构,用于预测在不同微流化压力(50 - 200兆帕)和循环次数(1 - 7)下甘蔗汁的质量,此前这方面尚未有研究。测试了具有不同隐藏层神经元数量(HLNs)的两种隐藏层(HL)激活函数(双曲正切S型函数、对数S型函数)和学习算法(Levenberg-Marquardt算法、广义回归神经网络算法),以预测不同微流化处理条件下甘蔗汁的颜色、总酚含量、总黄酮含量、叶绿素含量、总糖和还原糖含量、多酚氧化酶活性、过氧化物酶活性、蔗糖中性转化酶活性、好氧平板计数、酵母和霉菌计数、粒径、感官评分和沉降速率。结果表明,Levenberg-Marquardt算法 + 对数S型函数、广义回归神经网络算法 + 对数S型函数以及广义回归神经网络算法 + 双曲正切S型函数的组合预测准确率超过90%。在这些模型中,广义回归神经网络算法 + 双曲正切S型函数在使用相对较少神经元数量(10个HLNs)进行训练时准确率为91.7%,测试时准确率为96%,因此被选来预测甘蔗汁的质量特性。
在线版本包含可在10.1007/s13197-024-05994-2获取的补充材料。