Wilm Bertram J, Barmet Christoph, Gross Simon, Kasper Lars, Vannesjo S Johanna, Haeberlin Max, Dietrich Benjamin E, Brunner David O, Schmid Thomas, Pruessmann Klaas P
Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Zurich, Switzerland.
Skope Magnetic Resonance Technologies Inc, Zurich, Switzerland.
Magn Reson Med. 2017 Jan;77(1):83-91. doi: 10.1002/mrm.26493. Epub 2016 Oct 21.
The purpose of this work was to improve the quality of single-shot spiral MRI and demonstrate its application for diffusion-weighted imaging.
Image formation is based on an expanded encoding model that accounts for dynamic magnetic fields up to third order in space, nonuniform static B , and coil sensitivity encoding. The encoding model is determined by B mapping, sensitivity mapping, and concurrent field monitoring. Reconstruction is performed by iterative inversion of the expanded signal equations. Diffusion-tensor imaging with single-shot spiral readouts is performed in a phantom and in vivo, using a clinical 3T instrument. Image quality is assessed in terms of artefact levels, image congruence, and the influence of the different encoding factors.
Using the full encoding model, diffusion-weighted single-shot spiral imaging of high quality is accomplished both in vitro and in vivo. Accounting for actual field dynamics, including higher orders, is found to be critical to suppress blurring, aliasing, and distortion. Enhanced image congruence permitted data fusion and diffusion tensor analysis without coregistration.
Use of an expanded signal model largely overcomes the traditional vulnerability of spiral imaging with long readouts. It renders single-shot spirals competitive with echo-planar readouts and thus deploys shorter echo times and superior readout efficiency for diffusion imaging and further prospective applications. Magn Reson Med 77:83-91, 2017. © 2016 International Society for Magnetic Resonance in Medicine.
本研究旨在提高单次激发螺旋MRI的质量,并展示其在扩散加权成像中的应用。
图像形成基于一种扩展编码模型,该模型考虑了空间中高达三阶的动态磁场、不均匀静态磁场B以及线圈灵敏度编码。编码模型由B映射、灵敏度映射和并发场监测确定。通过对扩展信号方程进行迭代反演来进行重建。使用临床3T仪器,在体模和体内进行单次激发螺旋读出的扩散张量成像。根据伪影水平、图像一致性以及不同编码因素的影响来评估图像质量。
使用完整的编码模型,在体外和体内均实现了高质量的扩散加权单次激发螺旋成像。发现考虑实际场动态,包括高阶项,对于抑制模糊、混叠和失真至关重要。增强的图像一致性允许在无需配准的情况下进行数据融合和扩散张量分析。
使用扩展信号模型在很大程度上克服了传统长读出螺旋成像的脆弱性。它使单次激发螺旋成像与回波平面读出具有竞争力,从而为扩散成像及进一步的前瞻性应用提供了更短的回波时间和更高的读出效率。《磁共振医学》77:83 - 91, 2017。© 2016国际磁共振医学学会。