Suppr超能文献

一种用于解决抽象任务规则之间冲突的认知控制神经机制。

A neural mechanism of cognitive control for resolving conflict between abstract task rules.

作者信息

Sheu Yi-Shin, Courtney Susan M

机构信息

Department of Psychological & Brain Sciences, Johns Hopkins University, Baltimore, MD, USA.

Department of Psychological & Brain Sciences, Johns Hopkins University, Baltimore, MD, USA; F.M. Kirby Research Center for Functional Brain Imaging, The Kennedy Krieger Institute, Baltimore, MD, USA; Department of Neuroscience, Johns Hopkins University, Baltimore, MD, USA.

出版信息

Cortex. 2016 Dec;85:13-24. doi: 10.1016/j.cortex.2016.09.018. Epub 2016 Oct 1.

Abstract

Conflict between multiple sensory stimuli or potential motor responses is thought to be resolved via bias signals from prefrontal cortex (PFC). However, population codes in the PFC also represent abstract information, such as task rules. How is conflict between active abstract representations resolved? We used functional neuroimaging to investigate the mechanism responsible for resolving conflict between abstract representations of task rules. Participants performed two different tasks based on a cue. We manipulated the degree of conflict at the task-rule level by training participants to associate the color and shape dimensions of the cue with either the same task rule (congruent cues) or different ones (incongruent cues). Phonological and semantic tasks were used in which performance depended on learned, abstract representations of information, rather than sensory features of the target stimulus or on any habituated stimulus-response associations. In addition, these tasks activate distinct regions that allowed us to measure magnitude of conflict between tasks. We found that incongruent cues were associated with increased activity in several cognitive control areas, including the inferior frontal gyrus, inferior parietal lobule, insula, and subcortical regions. Conflict between abstract representations appears to be resolved by rule-specific activity in the inferior frontal gyrus that is correlated with enhanced activity related to the relevant information. Furthermore, multi-voxel pattern analysis of the activity in the inferior frontal gyrus was shown to carry information about both the currently relevant rule (semantic/phonological) and the currently relevant cue context (color/shape). Similar to models of attentional selection of conflicting sensory or motor representations, the current findings indicate part of the frontal cortex provides a bias signal, representing task rules, that enhances task-relevant information. However, the frontal cortex can also be the target of these bias signals in order to enhance abstract representations that are independent of particular stimuli or motor responses.

摘要

多种感觉刺激或潜在运动反应之间的冲突被认为是通过前额叶皮层(PFC)发出的偏向信号来解决的。然而,PFC中的群体编码也代表抽象信息,比如任务规则。活跃的抽象表征之间的冲突是如何解决的呢?我们使用功能神经成像来研究负责解决任务规则抽象表征之间冲突的机制。参与者根据一个提示执行两项不同的任务。我们通过训练参与者将提示的颜色和形状维度与相同的任务规则(一致提示)或不同的任务规则(不一致提示)相关联,在任务规则层面操纵冲突程度。使用了语音和语义任务,其中表现取决于所学的信息抽象表征,而非目标刺激的感觉特征或任何习惯性的刺激 - 反应关联。此外,这些任务激活了不同的区域,使我们能够测量任务之间冲突的程度。我们发现,不一致提示与几个认知控制区域的活动增加有关,包括额下回、顶下小叶、脑岛和皮层下区域。抽象表征之间的冲突似乎是通过额下回中与相关信息增强活动相关的规则特异性活动来解决的。此外,对额下回活动的多体素模式分析表明,它携带有关当前相关规则(语义/语音)和当前相关提示背景(颜色/形状)的信息。与冲突感觉或运动表征的注意力选择模型类似,当前研究结果表明额叶皮层的一部分提供了一个代表任务规则的偏向信号,该信号增强了与任务相关的信息。然而,额叶皮层也可以是这些偏向信号的目标,以增强独立于特定刺激或运动反应的抽象表征。

相似文献

1
A neural mechanism of cognitive control for resolving conflict between abstract task rules.
Cortex. 2016 Dec;85:13-24. doi: 10.1016/j.cortex.2016.09.018. Epub 2016 Oct 1.
2
Attentional control of task and response in lateral and medial frontal cortex: brain activity and reaction time distributions.
Neuropsychologia. 2009 Aug;47(10):2089-99. doi: 10.1016/j.neuropsychologia.2009.03.019. Epub 2009 Apr 5.
3
Dynamic Trial-by-Trial Recoding of Task-Set Representations in the Frontoparietal Cortex Mediates Behavioral Flexibility.
J Neurosci. 2017 Nov 8;37(45):11037-11050. doi: 10.1523/JNEUROSCI.0935-17.2017. Epub 2017 Oct 2.
4
Who comes first? The role of the prefrontal and parietal cortex in cognitive control.
J Cogn Neurosci. 2005 Sep;17(9):1367-75. doi: 10.1162/0898929054985400.
5
Attentional control during the transient updating of cue information.
Brain Res. 2009 Jan 9;1247:149-58. doi: 10.1016/j.brainres.2008.10.010. Epub 2008 Oct 22.
6
The neural correlates and functional integration of cognitive control in a Stroop task.
Neuroimage. 2005 Jan 15;24(2):539-47. doi: 10.1016/j.neuroimage.2004.09.007.
8
Response competition and response inhibition during different choice-discrimination tasks: evidence from ERP measured inside MRI scanner.
Int J Psychophysiol. 2013 Jul;89(1):37-47. doi: 10.1016/j.ijpsycho.2013.04.021. Epub 2013 May 9.
9
The neural mechanisms of semantic and response conflicts: an fMRI study of practice-related effects in the Stroop task.
Neuroimage. 2013 Feb 1;66:577-84. doi: 10.1016/j.neuroimage.2012.10.028. Epub 2012 Oct 24.
10
Frontoparietal representations of task context support the flexible control of goal-directed cognition.
J Neurosci. 2014 Aug 6;34(32):10743-55. doi: 10.1523/JNEUROSCI.5282-13.2014.

引用本文的文献

1
Resting-state connectivity and task-based cortical response in post-stroke executive dysfunction: A fNIRS study.
Neuroimage Rep. 2025 Jan 27;5(1):100236. doi: 10.1016/j.ynirp.2025.100236. eCollection 2025 Mar.
2
Neurophysiological insights into catecholamine-dependent tDCS modulation of cognitive control.
Commun Biol. 2025 Mar 6;8(1):375. doi: 10.1038/s42003-025-07805-6.
4
Reconfiguration of brain networks supporting inhibition of emotional challenge.
Neuroimage. 2019 Feb 1;186:350-357. doi: 10.1016/j.neuroimage.2018.10.066. Epub 2018 Oct 27.

本文引用的文献

1
Frontoparietal representations of task context support the flexible control of goal-directed cognition.
J Neurosci. 2014 Aug 6;34(32):10743-55. doi: 10.1523/JNEUROSCI.5282-13.2014.
2
Assessing the significance of focal activations using their spatial extent.
Hum Brain Mapp. 1994;1(3):210-20. doi: 10.1002/hbm.460010306.
4
The dynamic nature of top-down signals originating from prefrontal cortex: a combined fMRI-TMS study.
J Neurosci. 2012 Oct 31;32(44):15458-66. doi: 10.1523/JNEUROSCI.0627-12.2012.
5
Causal role of the prefrontal cortex in top-down modulation of visual processing and working memory.
Nat Neurosci. 2011 May;14(5):656-61. doi: 10.1038/nn.2773. Epub 2011 Mar 27.
6
Distributed and causal influence of frontal operculum in task control.
Proc Natl Acad Sci U S A. 2011 Mar 8;108(10):4230-5. doi: 10.1073/pnas.1013361108. Epub 2011 Feb 22.
7
The prefrontal cortex modulates category selectivity in human extrastriate cortex.
J Cogn Neurosci. 2011 Jan;23(1):1-10. doi: 10.1162/jocn.2010.21516.
8
Decoding task-based attentional modulation during face categorization.
J Cogn Neurosci. 2011 May;23(5):1198-204. doi: 10.1162/jocn.2010.21503. Epub 2010 Apr 30.
9
Neural mechanisms for interacting with a world full of action choices.
Annu Rev Neurosci. 2010;33:269-98. doi: 10.1146/annurev.neuro.051508.135409.
10
PyMVPA: A python toolbox for multivariate pattern analysis of fMRI data.
Neuroinformatics. 2009 Spring;7(1):37-53. doi: 10.1007/s12021-008-9041-y. Epub 2009 Jan 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验