Suppr超能文献

PyMVPA:用于功能磁共振成像数据多变量模式分析的Python工具箱。

PyMVPA: A python toolbox for multivariate pattern analysis of fMRI data.

作者信息

Hanke Michael, Halchenko Yaroslav O, Sederberg Per B, Hanson Stephen José, Haxby James V, Pollmann Stefan

机构信息

Department of Experimental Psychology, University of Magdeburg, Germany.

出版信息

Neuroinformatics. 2009 Spring;7(1):37-53. doi: 10.1007/s12021-008-9041-y. Epub 2009 Jan 28.

Abstract

Decoding patterns of neural activity onto cognitive states is one of the central goals of functional brain imaging. Standard univariate fMRI analysis methods, which correlate cognitive and perceptual function with the blood oxygenation-level dependent (BOLD) signal, have proven successful in identifying anatomical regions based on signal increases during cognitive and perceptual tasks. Recently, researchers have begun to explore new multivariate techniques that have proven to be more flexible, more reliable, and more sensitive than standard univariate analysis. Drawing on the field of statistical learning theory, these new classifier-based analysis techniques possess explanatory power that could provide new insights into the functional properties of the brain. However, unlike the wealth of software packages for univariate analyses, there are few packages that facilitate multivariate pattern classification analyses of fMRI data. Here we introduce a Python-based, cross-platform, and open-source software toolbox, called PyMVPA, for the application of classifier-based analysis techniques to fMRI datasets. PyMVPA makes use of Python's ability to access libraries written in a large variety of programming languages and computing environments to interface with the wealth of existing machine learning packages. We present the framework in this paper and provide illustrative examples on its usage, features, and programmability.

摘要

将神经活动模式解码为认知状态是功能性脑成像的核心目标之一。标准的单变量功能磁共振成像(fMRI)分析方法,即将认知和感知功能与血氧水平依赖(BOLD)信号相关联,已成功地在认知和感知任务期间基于信号增加来识别解剖区域。最近,研究人员开始探索新的多变量技术,这些技术已被证明比标准单变量分析更灵活、更可靠且更敏感。借鉴统计学习理论领域,这些基于分类器的新分析技术具有解释力,可为大脑的功能特性提供新见解。然而,与丰富的单变量分析软件包不同,很少有软件包便于对fMRI数据进行多变量模式分类分析。在此,我们介绍一个基于Python的、跨平台的开源软件工具箱,名为PyMVPA,用于将基于分类器的分析技术应用于fMRI数据集。PyMVPA利用Python访问用多种编程语言和计算环境编写的库的能力,与大量现有的机器学习软件包进行接口。我们在本文中展示该框架,并提供关于其用法、功能和可编程性的示例说明。

相似文献

1
PyMVPA: A python toolbox for multivariate pattern analysis of fMRI data.
Neuroinformatics. 2009 Spring;7(1):37-53. doi: 10.1007/s12021-008-9041-y. Epub 2009 Jan 28.
2
The RUMBA software: tools for neuroimaging data analysis.
Neuroinformatics. 2004;2(1):71-100. doi: 10.1385/NI:2:1:071.
3
ACTION: Augmentation and computation toolbox for brain network analysis with functional MRI.
Neuroimage. 2025 Jan;305:120967. doi: 10.1016/j.neuroimage.2024.120967. Epub 2024 Dec 21.
4
BrainIAK tutorials: User-friendly learning materials for advanced fMRI analysis.
PLoS Comput Biol. 2020 Jan 15;16(1):e1007549. doi: 10.1371/journal.pcbi.1007549. eCollection 2020 Jan.
5
NeuroPycon: An open-source python toolbox for fast multi-modal and reproducible brain connectivity pipelines.
Neuroimage. 2020 Oct 1;219:117020. doi: 10.1016/j.neuroimage.2020.117020. Epub 2020 Jun 6.
6
Evaluation and optimization of fMRI single-subject processing pipelines with NPAIRS and second-level CVA.
Magn Reson Imaging. 2009 Feb;27(2):264-78. doi: 10.1016/j.mri.2008.05.021. Epub 2008 Oct 11.
8
Real-time fMRI pattern decoding and neurofeedback using FRIEND: an FSL-integrated BCI toolbox.
PLoS One. 2013 Dec 2;8(12):e81658. doi: 10.1371/journal.pone.0081658. eCollection 2013.
9
Wyrm: A Brain-Computer Interface Toolbox in Python.
Neuroinformatics. 2015 Oct;13(4):471-86. doi: 10.1007/s12021-015-9271-8.
10
PyMVPA: A Unifying Approach to the Analysis of Neuroscientific Data.
Front Neuroinform. 2009 Feb 4;3:3. doi: 10.3389/neuro.11.003.2009. eCollection 2009.

引用本文的文献

1
Cortical network modulations associated with prolonged training of the multiple object-tracking task.
Imaging Neurosci (Camb). 2025 May 12;3. doi: 10.1162/imag_a_00577. eCollection 2025.
2
The Voxelwise Encoding Model framework: A tutorial introduction to fitting encoding models to fMRI data.
Imaging Neurosci (Camb). 2025 May 9;3. doi: 10.1162/imag_a_00575. eCollection 2025.
3
Valenced tactile information is evoked by neutral visual cues following emotional learning.
Imaging Neurosci (Camb). 2024 Oct 17;2. doi: 10.1162/imag_a_00320. eCollection 2024.
4
Broadening the scope: Multiple functional connectivity networks underlying threat conditioning and extinction.
Imaging Neurosci (Camb). 2024 Jul 3;2. doi: 10.1162/imag_a_00213. eCollection 2024.
5
Empathy from dissimilarity: Multivariate pattern analysis of neural activity during observation of somatosensory experience.
Imaging Neurosci (Camb). 2024 Mar 19;2. doi: 10.1162/imag_a_00110. eCollection 2024.
7
Is the whole the sum of its parts? Neural computation of consumer bundle valuation in humans.
bioRxiv. 2025 May 1:2025.04.28.650827. doi: 10.1101/2025.04.28.650827.
9
Twenty Years of Neuroinformatics: A Bibliometric Analysis.
Neuroinformatics. 2025 Jan 15;23(1):7. doi: 10.1007/s12021-024-09712-3.
10
ACTION: Augmentation and computation toolbox for brain network analysis with functional MRI.
Neuroimage. 2025 Jan;305:120967. doi: 10.1016/j.neuroimage.2024.120967. Epub 2024 Dec 21.

本文引用的文献

1
Individual faces elicit distinct response patterns in human anterior temporal cortex.
Proc Natl Acad Sci U S A. 2007 Dec 18;104(51):20600-5. doi: 10.1073/pnas.0705654104. Epub 2007 Dec 11.
4
Single-trial classification of MEG recordings.
IEEE Trans Biomed Eng. 2007 Mar;54(3):436-43. doi: 10.1109/TBME.2006.888824.
5
Reading hidden intentions in the human brain.
Curr Biol. 2007 Feb 20;17(4):323-8. doi: 10.1016/j.cub.2006.11.072. Epub 2007 Feb 8.
6
Beyond mind-reading: multi-voxel pattern analysis of fMRI data.
Trends Cogn Sci. 2006 Sep;10(9):424-30. doi: 10.1016/j.tics.2006.07.005. Epub 2006 Aug 8.
7
Decoding mental states from brain activity in humans.
Nat Rev Neurosci. 2006 Jul;7(7):523-34. doi: 10.1038/nrn1931.
8
Decoding near-threshold perception of fear from distributed single-trial brain activation.
Cereb Cortex. 2007 Mar;17(3):691-701. doi: 10.1093/cercor/bhk020. Epub 2006 Apr 20.
9
Exploring predictive and reproducible modeling with the single-subject FIAC dataset.
Hum Brain Mapp. 2006 May;27(5):452-61. doi: 10.1002/hbm.20243.
10
Robust classification of EEG signal for brain-computer interface.
IEEE Trans Neural Syst Rehabil Eng. 2006 Mar;14(1):24-9. doi: 10.1109/TNSRE.2005.862695.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验