Suppr超能文献

人类股腘动脉衰老的本构描述。

Constitutive description of human femoropopliteal artery aging.

作者信息

Kamenskiy Alexey, Seas Andreas, Deegan Paul, Poulson William, Anttila Eric, Sim Sylvie, Desyatova Anastasia, MacTaggart Jason

机构信息

Department of Surgery, 987690 Nebraska Medical Center, University of Nebraska Medical Center, Omaha, NE, 68198-7690, USA.

Department of Chemical Engineering, University of Maryland, Baltimore County, MD, USA.

出版信息

Biomech Model Mechanobiol. 2017 Apr;16(2):681-692. doi: 10.1007/s10237-016-0845-7. Epub 2016 Oct 22.

Abstract

Femoropopliteal artery (FPA) mechanics play a paramount role in pathophysiology and the artery's response to therapeutic interventions, but data on FPA mechanical properties are scarce. Our goal was to characterize human FPAs over a wide population to derive a constitutive description of FPA aging to be used for computational modeling. Fresh human FPA specimens ([Formula: see text]) were obtained from [Formula: see text] predominantly male (80 %) donors 54±15 years old (range 13-82 years). Morphometric characteristics including radius, wall thickness, opening angle, and longitudinal pre-stretch were recorded. Arteries were subjected to multi-ratio planar biaxial extension to determine constitutive parameters for an invariant-based model accounting for the passive contributions of ground substance, elastin, collagen, and smooth muscle. Nonparametric bootstrapping was used to determine unique sets of material parameters that were used to derive age-group-specific characteristics. Physiologic stress-stretch state was calculated to capture changes with aging. Morphometric and constitutive parameters were derived for seven age groups. Vessel radius, wall thickness, and circumferential opening angle increased with aging, while longitudinal pre-stretch decreased ([Formula: see text]). Age-group-specific constitutive parameters portrayed orthotropic FPA stiffening, especially in the longitudinal direction. Structural changes in artery wall elastin were associated with reduction of physiologic longitudinal and circumferential stretches and stresses with age. These data and the constitutive description of FPA aging shed new light on our understanding of peripheral arterial disease pathophysiology and arterial aging. Application of this knowledge might improve patient selection for specific treatment modalities in personalized, precision medicine algorithms and could assist in device development for treatment of peripheral artery disease.

摘要

股腘动脉(FPA)力学在病理生理学以及动脉对治疗干预的反应中起着至关重要的作用,但关于FPA力学特性的数据却很稀少。我们的目标是对广泛人群中的人体FPA进行表征,以得出用于计算建模的FPA衰老本构描述。从54±15岁(年龄范围13 - 82岁)的[公式:见原文]名主要为男性(80%)的供体获取新鲜人体FPA标本([公式:见原文])。记录了包括半径、壁厚、开口角度和纵向预拉伸在内的形态测量特征。对动脉进行多比例平面双轴拉伸,以确定基于不变量模型的本构参数,该模型考虑了细胞外基质、弹性蛋白、胶原蛋白和平滑肌的被动贡献。使用非参数自举法确定用于推导特定年龄组特征的唯一材料参数集。计算生理应力 - 拉伸状态以捕捉衰老过程中的变化。得出了七个年龄组的形态测量和本构参数。血管半径、壁厚和圆周开口角度随衰老增加,而纵向预拉伸减小([公式:见原文])。特定年龄组的本构参数描绘了FPA的正交各向异性硬化,尤其是在纵向方向。动脉壁弹性蛋白的结构变化与生理纵向和圆周拉伸及应力随年龄的降低有关。这些数据以及FPA衰老的本构描述为我们理解外周动脉疾病病理生理学和动脉衰老提供了新的视角。在个性化、精准医学算法中应用这些知识可能会改善特定治疗方式的患者选择,并有助于外周动脉疾病治疗设备的开发。

相似文献

1
Constitutive description of human femoropopliteal artery aging.
Biomech Model Mechanobiol. 2017 Apr;16(2):681-692. doi: 10.1007/s10237-016-0845-7. Epub 2016 Oct 22.
2
Constitutive modeling of human femoropopliteal artery biaxial stiffening due to aging and diabetes.
Acta Biomater. 2017 Dec;64:50-58. doi: 10.1016/j.actbio.2017.09.042. Epub 2017 Sep 30.
3
In situ longitudinal pre-stretch in the human femoropopliteal artery.
Acta Biomater. 2016 Mar 1;32:231-237. doi: 10.1016/j.actbio.2016.01.002. Epub 2016 Jan 5.
4
Mechanical damage characterization in human femoropopliteal arteries of different ages.
Acta Biomater. 2019 May;90:225-240. doi: 10.1016/j.actbio.2019.03.053. Epub 2019 Mar 28.
6
Mechanical, structural, and physiologic differences between above and below-knee human arteries.
Acta Biomater. 2024 Mar 15;177:278-299. doi: 10.1016/j.actbio.2024.01.040. Epub 2024 Feb 1.
7
A viscoelastic constitutive framework for aging muscular and elastic arteries.
Acta Biomater. 2024 Oct 15;188:223-241. doi: 10.1016/j.actbio.2024.09.021. Epub 2024 Sep 18.
8
A viscoelastic constitutive model for human femoropopliteal arteries.
Acta Biomater. 2023 Oct 15;170:68-85. doi: 10.1016/j.actbio.2023.09.007. Epub 2023 Sep 10.
9
Effects of age on the physiological and mechanical characteristics of human femoropopliteal arteries.
Acta Biomater. 2015 Jan;11:304-13. doi: 10.1016/j.actbio.2014.09.050. Epub 2014 Oct 6.
10
Passive biaxial mechanical properties and in vivo axial pre-stretch of the diseased human femoropopliteal and tibial arteries.
Acta Biomater. 2014 Mar;10(3):1301-13. doi: 10.1016/j.actbio.2013.12.027. Epub 2013 Dec 24.

引用本文的文献

1
An optimized differential evolution algorithm for constitutive model fitting of arteries.
Acta Mech. 2024 Jul;235(7):4149-4174. doi: 10.1007/s00707-024-03936-9. Epub 2024 Apr 18.
2
Unraveling Changes of Brachial Artery Residual Stress and Its Relationship to Cardiovascular Disease Risk Factors.
Rev Cardiovasc Med. 2024 Aug 16;25(8):289. doi: 10.31083/j.rcm2508289. eCollection 2024 Aug.
3
Experimental Protocols to Test Aortic Soft Tissues: A Systematic Review.
Bioengineering (Basel). 2024 Jul 23;11(8):745. doi: 10.3390/bioengineering11080745.
4
Mechanical, structural, and morphological differences in the iliac arteries.
J Mech Behav Biomed Mater. 2024 Jul;155:106535. doi: 10.1016/j.jmbbm.2024.106535. Epub 2024 Apr 1.
5
Structural and Mechanical Properties of Human Superficial Femoral and Popliteal Arteries.
Ann Biomed Eng. 2024 Apr;52(4):794-815. doi: 10.1007/s10439-023-03435-3. Epub 2024 Feb 6.
6
Mechanical, structural, and physiologic differences between above and below-knee human arteries.
Acta Biomater. 2024 Mar 15;177:278-299. doi: 10.1016/j.actbio.2024.01.040. Epub 2024 Feb 1.
7
A viscoelastic constitutive model for human femoropopliteal arteries.
Acta Biomater. 2023 Oct 15;170:68-85. doi: 10.1016/j.actbio.2023.09.007. Epub 2023 Sep 10.
8
Increased arterial pressure volume index and cardiovascular risk score in China.
BMC Cardiovasc Disord. 2023 Jan 16;23(1):22. doi: 10.1186/s12872-022-03035-4.
9
A method of assessing peripheral stent abrasiveness under cyclic deformations experienced during limb movement.
Acta Biomater. 2022 Nov;153:331-341. doi: 10.1016/j.actbio.2022.09.044. Epub 2022 Sep 24.
10
The Application of Biomechanics Combined with Human Body Structure in Volleyball Technical Analysis.
Comput Intell Neurosci. 2022 May 18;2022:5287538. doi: 10.1155/2022/5287538. eCollection 2022.

本文引用的文献

1
A comparison of age-related changes in axial prestretch in human carotid arteries and in human abdominal aorta.
Biomech Model Mechanobiol. 2017 Feb;16(1):375-383. doi: 10.1007/s10237-016-0797-y. Epub 2016 May 17.
2
In situ longitudinal pre-stretch in the human femoropopliteal artery.
Acta Biomater. 2016 Mar 1;32:231-237. doi: 10.1016/j.actbio.2016.01.002. Epub 2016 Jan 5.
3
Heart Disease and Stroke Statistics-2016 Update: A Report From the American Heart Association.
Circulation. 2016 Jan 26;133(4):e38-360. doi: 10.1161/CIR.0000000000000350. Epub 2015 Dec 16.
4
Age and disease-related geometric and structural remodeling of the carotid artery.
J Vasc Surg. 2015 Dec;62(6):1521-8. doi: 10.1016/j.jvs.2014.10.041. Epub 2014 Dec 9.
5
Effects of age on the physiological and mechanical characteristics of human femoropopliteal arteries.
Acta Biomater. 2015 Jan;11:304-13. doi: 10.1016/j.actbio.2014.09.050. Epub 2014 Oct 6.
6
Three-dimensional bending, torsion and axial compression of the femoropopliteal artery during limb flexion.
J Biomech. 2014 Jul 18;47(10):2249-56. doi: 10.1016/j.jbiomech.2014.04.053. Epub 2014 May 9.
7
Biaxial mechanical properties of the human thoracic and abdominal aorta, common carotid, subclavian, renal and common iliac arteries.
Biomech Model Mechanobiol. 2014 Nov;13(6):1341-59. doi: 10.1007/s10237-014-0576-6. Epub 2014 Apr 8.
8
Passive biaxial mechanical properties and in vivo axial pre-stretch of the diseased human femoropopliteal and tibial arteries.
Acta Biomater. 2014 Mar;10(3):1301-13. doi: 10.1016/j.actbio.2013.12.027. Epub 2013 Dec 24.
9
Biomechanical regulation of vascular smooth muscle cell functions: from in vitro to in vivo understanding.
J R Soc Interface. 2013 Oct 23;11(90):20130852. doi: 10.1098/rsif.2013.0852. Print 2014 Jan 6.
10
Axial prestretch and circumferential distensibility in biomechanics of abdominal aorta.
Biomech Model Mechanobiol. 2014 Aug;13(4):783-99. doi: 10.1007/s10237-013-0534-8. Epub 2013 Oct 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验