Kauer Markus, Belova-Magri Valentina, Cairós Carlos, Schreier Hans-Jürgen, Mettin Robert
Atotech Deutschland GmbH, Erasmusstraße 20, 10553 Berlin, Germany; Drittes Physikalisches Institut, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany.
Atotech Deutschland GmbH, Erasmusstraße 20, 10553 Berlin, Germany.
Ultrason Sonochem. 2017 Jan;34:474-483. doi: 10.1016/j.ultsonch.2016.06.008. Epub 2016 Jun 8.
Despite the increasing use of high frequency ultrasound in heterogeneous reactions, knowledge about the spatial distribution of cavitation bubbles at the irradiated solid surface is still lacking. This gap hinders controllable surface sonoreactions. Here we present an optimization study of the cavitation bubble distribution at a solid sample using sonoluminescence and sonochemiluminescence imaging. The experiments were performed at three ultrasound frequencies, namely 580, 860 and 1142kHz. We found that position and orientation of the sample to the transducer, as well as its material properties influence the distribution of active cavitation bubbles at the sample surface in the reactor. The reason is a significant modification of the acoustic field due to reflections and absorption of the ultrasonic wave by the solid. This is retraced by numerical simulations employing the Finite Element Method, yielding reasonable agreement of luminescent zones and high acoustic pressure amplitudes in 2D simulations. A homogeneous coverage of the test sample surface with cavitation is finally reached at nearly vertical inclination with respect to the incident wave.
尽管高频超声在非均相反应中的应用日益广泛,但对于辐照固体表面空化气泡的空间分布仍缺乏了解。这一差距阻碍了可控的表面声化学反应。在此,我们利用声致发光和声化学发光成像技术,对固体样品上的空化气泡分布进行了优化研究。实验在580、860和1142kHz这三个超声频率下进行。我们发现,样品相对于换能器的位置和取向及其材料特性会影响反应器中样品表面活性空化气泡的分布。原因是固体对超声波的反射和吸收会显著改变声场。通过使用有限元方法进行数值模拟来追溯这一现象,在二维模拟中发光区域和声压幅值取得了合理的一致性。最终,在相对于入射波几乎垂直倾斜的情况下,测试样品表面实现了空化的均匀覆盖。