Suppr超能文献

在水中利用短脉冲激光烧蚀金属薄膜生成纳米颗粒的原子级建模。

Atomistic modeling of nanoparticle generation in short pulse laser ablation of thin metal films in water.

机构信息

Department of Materials Science and Engineering, University of Virginia, 395 McCormick Road, Charlottesville, VA 22904-4745, USA.

Department of Materials Science and Engineering, University of Virginia, 395 McCormick Road, Charlottesville, VA 22904-4745, USA.

出版信息

J Colloid Interface Sci. 2017 Mar 1;489:3-17. doi: 10.1016/j.jcis.2016.10.029. Epub 2016 Oct 15.

Abstract

Laser ablation in liquids is actively used for generation of clean colloidal nanoparticles with unique shapes and functionalities. The fundamental mechanisms of the laser ablation in liquids and the key processes that control the nanoparticle structure, composition, and size distribution, however, are not yet fully understood. In this paper, we report the results of first atomistic simulations of laser ablation of metal targets in liquid environment. A model combining a coarse-grained representation of the liquid environment (parameterized for water), a fully atomistic description of laser interactions with metal targets, and acoustic impedance matching boundary conditions is developed and applied for simulation of laser ablation of a thin silver film deposited on a silica substrate. The simulations, performed at two laser fluences in the regime of phase explosion, predict a rapid deceleration of the ejected ablation plume and the formation of a dense superheated molten layer at the water-plume interface. The water in contact with the hot metal layer is brought to the supercritical state and transforms into an expanding low density metal-water mixing region that serves as a precursor for the formation of a cavitation bubble. Two distinct mechanisms of the nanoparticle formation are predicted in the simulations: (1) the nucleation and growth of small (mostly ⩽10nm) nanoparticles in the metal-water mixing region and (2) the formation of larger (tens of nm) nanoparticles through the breakup of the superheated molten metal layer triggered by the emergence of complex morphological features attributed to the Rayleigh-Taylor instability of the interface between at the superheated metal layer and the supercritical water. The first mechanism is facilitated by the rapid cooling of the growing nanoparticles in the supercritical water environment, resulting in solidification of the nanoparticles located in the upper part of the mixing region on the timescale of nanoseconds. The computational prediction of the two mechanisms of nanoparticle formation yielding nanoparticles with different characteristic sizes is consistent with experimental observations of two distinct nanoparticle populations appearing at different stages of the ablation process.

摘要

激光烧蚀在液体中被广泛应用于生成具有独特形状和功能的清洁胶体纳米粒子。然而,激光烧蚀在液体中的基本机制以及控制纳米粒子结构、组成和尺寸分布的关键过程尚未完全理解。在本文中,我们报告了首次在液体环境中进行金属靶材激光烧蚀原子级模拟的结果。我们开发并应用了一种模型,该模型将液体环境的粗粒化表示(针对水进行参数化)、激光与金属靶材相互作用的全原子描述以及声阻抗匹配边界条件相结合,用于模拟沉积在二氧化硅基底上的薄银膜的激光烧蚀。在相爆炸区域的两个激光能量密度下进行的模拟预测,烧蚀羽流会迅速减速,并在水-羽流界面形成一个致密的过热熔融层。与热金属层接触的水被带入超临界状态,并转化为一个膨胀的低密度金属-水混合区,作为空化泡形成的前体。模拟预测了两种不同的纳米颗粒形成机制:(1)在金属-水混合区中形成小(大多 ⩽10nm)纳米颗粒的成核和生长,以及(2)通过过热熔融金属层的破裂形成大(数十纳米)纳米颗粒,这种破裂是由界面的复杂形态特征引发的,这些特征归因于过热金属层和超临界水之间的瑞利-泰勒不稳定性。第一种机制是通过在超临界水环境中快速冷却生长的纳米颗粒来促进的,这导致位于混合区上部的纳米颗粒在纳秒时间尺度上凝固。两种不同纳米颗粒形成机制的计算预测产生了具有不同特征尺寸的纳米颗粒,这与在烧蚀过程的不同阶段出现的两种不同纳米颗粒群体的实验观察结果一致。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验