Suppr超能文献

基于X射线探测和原子模拟的水中金纳米颗粒皮秒激光破碎的物理机制与过程

Physical Regimes and Mechanisms of Picosecond Laser Fragmentation of Gold Nanoparticles in Water from X-ray Probing and Atomistic Simulations.

作者信息

Plech Anton, Tack Meike, Huang Hao, Arefev Mikhail, Ziefuss Anna R, Levantino Matteo, Karadas Hasan, Chen Chaobo, Zhigilei Leonid V, Reichenberger Sven

机构信息

Institute for Photon Science and Synchrotron Radiation, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany.

Department of Technical Chemistry I and Center for Nanointegration Duisburg-Essen, University of Duisburg-Essen, Universitätsstrasse 7, D-45141 Essen, Germany.

出版信息

ACS Nano. 2024 Apr 16;18(15):10527-10541. doi: 10.1021/acsnano.3c12314. Epub 2024 Apr 3.

Abstract

Laser fragmentation in liquids has emerged as a promising green chemistry technique for changing the size, shape, structure, and phase composition of colloidal nanoparticles, thus tuning their properties to the needs of practical applications. The advancement of this technique requires a solid understanding of the mechanisms of laser-nanoparticle interactions that lead to the fragmentation. While theoretical studies have made impressive practical and mechanistic predictions, their experimental validation is required. Hence, using the picosecond laser fragmentation of Au nanoparticles in water as a model system, the transient melting and fragmentation processes are investigated with a combination of time-resolved X-ray probing and atomistic simulations. The direct comparison of the diffraction profiles predicted in the simulations and measured in experiments has revealed a sequence of several nonequilibrium processes triggered by the laser irradiation. At low laser fluences, in the regime of nanoparticle melting and resolidification, the results provide evidence of a transient superheating of crystalline nanoparticles above the melting temperature. At fluences about three times the melting threshold, the fragmentation starts with evaporation of Au atoms and their condensation into small satellite nanoparticles. As fluence increases above five times the melting threshold, a transition to a rapid (explosive) phase decomposition of superheated nanoparticles into small liquid droplets and vapor phase atoms is observed. The transition to the phase explosion fragmentation regime is signified by prominent changes in the small-angle X-ray scattering profiles measured in experiments and calculated in simulations. The good match between the experimental and computational diffraction profiles gives credence to the physical picture of the cascade of thermal fragmentation regimes revealed in the simulations and demonstrates the high promise of the joint tightly integrated computational and experimental efforts.

摘要

液体中的激光破碎已成为一种很有前景的绿色化学技术,可用于改变胶体纳米颗粒的尺寸、形状、结构和相组成,从而根据实际应用的需求调整其性能。该技术的发展需要深入了解导致破碎的激光与纳米颗粒相互作用的机制。虽然理论研究已经做出了令人印象深刻的实际和机理预测,但仍需要实验验证。因此,以水中金纳米颗粒的皮秒激光破碎为模型系统,结合时间分辨X射线探测和原子模拟研究了瞬态熔化和破碎过程。模拟预测的衍射图谱与实验测量的衍射图谱的直接比较揭示了激光辐照引发的一系列非平衡过程。在低激光能量密度下,即在纳米颗粒熔化和再凝固的范围内,结果提供了晶体纳米颗粒在熔化温度以上瞬态过热的证据。当能量密度约为熔化阈值的三倍时,破碎从金原子的蒸发及其凝聚成小的卫星纳米颗粒开始。当能量密度增加到熔化阈值的五倍以上时,观察到过热纳米颗粒向快速(爆炸)相分解为小液滴和气相原子的转变。向相爆炸破碎模式的转变由实验测量和模拟计算的小角X射线散射图谱的显著变化表示。实验和计算衍射图谱之间的良好匹配证实了模拟中揭示的热破碎模式级联的物理图像,并证明了紧密结合的计算和实验联合努力的巨大前景。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验