Oh Eunkeu, Huston Alan L, Shabaev Andrew, Efros Alexander, Currie Marc, Susumu Kimihiro, Bussmann Konrad, Goswami Ramasis, Fatemi Fredrik K, Medintz Igor L
Optical Sciences Division Code 5600, U.S. Naval Research Laboratory, Washington, DC 20375, USA.
Sotera Defense Solutions, Inc. Columbia, MD 21046, USA.
Sci Rep. 2016 Oct 24;6:35538. doi: 10.1038/srep35538.
Luminescent gold nanocrystals (AuNCs) are a recently-developed material with potential optic, electronic and biological applications. They also demonstrate energy transfer (ET) acceptor/sensitization properties which have been ascribed to Förster resonance energy transfer (FRET) and, to a lesser extent, nanosurface energy transfer (NSET). Here, we investigate AuNC acceptor interactions with three structurally/functionally-distinct donor classes including organic dyes, metal chelates and semiconductor quantum dots (QDs). Donor quenching was observed for every donor-acceptor pair although AuNC sensitization was only observed from metal-chelates and QDs. FRET theory dramatically underestimated the observed energy transfer while NSET-based damping models provided better fits but could not reproduce the experimental data. We consider additional factors including AuNC magnetic dipoles, density of excited-states, dephasing time, and enhanced intersystem crossing that can also influence ET. Cumulatively, data suggests that AuNC sensitization is not by classical FRET or NSET and we provide a simplified distance-independent ET model to fit such experimental data.
发光金纳米晶体(AuNCs)是一种最近开发的材料,具有潜在的光学、电子和生物应用。它们还表现出能量转移(ET)受体/敏化特性,这归因于Förster共振能量转移(FRET),在较小程度上还归因于纳米表面能量转移(NSET)。在这里,我们研究了AuNC受体与三种结构/功能不同的供体类别之间的相互作用,包括有机染料、金属螯合物和半导体量子点(QDs)。虽然仅从金属螯合物和量子点中观察到AuNC敏化,但对于每对供体-受体都观察到了供体猝灭。FRET理论大大低估了观察到的能量转移,而基于NSET的阻尼模型提供了更好的拟合,但无法重现实验数据。我们考虑了其他因素,包括AuNC磁偶极子、激发态密度、退相时间和增强的系间窜越,这些也会影响能量转移。累积的数据表明,AuNC敏化不是通过经典的FRET或NSET,我们提供了一个简化的与距离无关的能量转移模型来拟合此类实验数据。