Suppr超能文献

蛋白质-脂质相互作用的直接评估揭示了蛋白质在膜中的浸入情况及各向同性双分子层结构。

Direct Evaluation of Protein-Lipid Contacts Reveals Protein Membrane Immersion and Isotropic Bicelle Structure.

作者信息

Schmidt Thomas, Situ Alan J, Ulmer Tobias S

机构信息

Department of Biochemistry & Molecular Medicine and Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California , 1501 San Pablo Street, Los Angeles, California 90033, United States.

出版信息

J Phys Chem Lett. 2016 Nov 3;7(21):4420-4426. doi: 10.1021/acs.jpclett.6b02159. Epub 2016 Oct 26.

Abstract

The solvation of membrane proteins by both lipids and water makes their membrane immersion difficult to predict and the choice of a membrane mimic challenging. To characterize protein-lipid contacts and bicelle membrane mimics, we examined protein-lipid cross-relaxation of integrin αIIb and β3(A711P) transmembrane helices in isotropic phospholipid bicelles (q = 0.5 and 0.7). Long-chain bicelle lipids dominated contacts with central helix segments, whereas both short- and long-chain lipids contacted the terminal turns of each helix in corroboration of the mixed bicelle model. The saturation transfer profiles from long-chain lipids directly established helix midpoints in the lipid bilayer. Lipid headgroups and water molecules engaged the side chains of buried serine and threonine in competition with intrahelical hydrogen bonding, illustrating that polar side chains seek the most favorable electrostatic contacts.

摘要

脂质和水对膜蛋白的溶剂化作用使得它们在膜中的浸入情况难以预测,且选择膜模拟物也颇具挑战。为了表征蛋白质 - 脂质相互作用以及双分子层膜模拟物,我们研究了整合素αIIb和β3(A711P)跨膜螺旋在各向同性磷脂双分子层(q = 0.5和0.7)中的蛋白质 - 脂质交叉弛豫。长链双分子层脂质主导了与螺旋中心段的相互作用,而短链和长链脂质均与每个螺旋的末端转角相互作用,这证实了混合双分子层模型。来自长链脂质的饱和转移谱直接确定了脂质双层中螺旋的中点。脂质头部基团和水分子与埋藏的丝氨酸和苏氨酸侧链相互作用,与螺旋内氢键形成竞争,这表明极性侧链寻求最有利的静电相互作用。

相似文献

1
Direct Evaluation of Protein-Lipid Contacts Reveals Protein Membrane Immersion and Isotropic Bicelle Structure.
J Phys Chem Lett. 2016 Nov 3;7(21):4420-4426. doi: 10.1021/acs.jpclett.6b02159. Epub 2016 Oct 26.
3
Bicelles and Other Membrane Mimics: Comparison of Structure, Properties, and Dynamics from MD Simulations.
J Phys Chem B. 2015 Dec 31;119(52):15831-43. doi: 10.1021/acs.jpcb.5b08463. Epub 2015 Dec 17.
4
Behavior of Most Widely Spread Lipids in Isotropic Bicelles.
Langmuir. 2018 Jul 17;34(28):8302-8313. doi: 10.1021/acs.langmuir.8b01454. Epub 2018 Jul 3.
5
Immersion Depths of Lipid Carbons in Bicelles Measured by Paramagnetic Relaxation Enhancement.
J Phys Chem B. 2017 Aug 17;121(32):7660-7670. doi: 10.1021/acs.jpcb.7b05822. Epub 2017 Aug 2.
6
Characterization of membrane protein interactions by isothermal titration calorimetry.
J Mol Biol. 2014 Oct 23;426(21):3670-80. doi: 10.1016/j.jmb.2014.08.020. Epub 2014 Aug 29.
7
Altering the edge chemistry of bicelles with peptoids.
Chem Phys Lipids. 2018 Dec;217:43-50. doi: 10.1016/j.chemphyslip.2018.10.004. Epub 2018 Nov 2.
8
Three-dimensional structure of the transmembrane domain of Vpu from HIV-1 in aligned phospholipid bicelles.
Biophys J. 2006 Oct 15;91(8):3032-42. doi: 10.1529/biophysj.106.087106. Epub 2006 Jul 21.
9
Optimal Bicelle Size q for Solution NMR Studies of the Protein Transmembrane Partition.
Chemistry. 2017 Jan 26;23(6):1361-1367. doi: 10.1002/chem.201604206. Epub 2016 Dec 22.
10
Bicelles: A natural 'molecular goniometer' for structural, dynamical and topological studies of molecules in membranes.
Biochimie. 2009 Jun;91(6):744-51. doi: 10.1016/j.biochi.2009.02.003. Epub 2009 Feb 25.

引用本文的文献

1
Comparison of Integrin αIIbβ3 Transmembrane Association in Vesicles and Bicelles.
Biochemistry. 2023 Jun 20;62(12):1858-1863. doi: 10.1021/acs.biochem.3c00177. Epub 2023 Jun 6.
2
Insight Into Pathological Integrin αIIbβ3 Activation From Safeguarding The Inactive State.
J Mol Biol. 2021 Apr 2;433(7):166832. doi: 10.1016/j.jmb.2021.166832. Epub 2021 Feb 2.
3
Bicelles Rich in both Sphingolipids and Cholesterol and Their Use in Studies of Membrane Proteins.
J Am Chem Soc. 2020 Jul 22;142(29):12715-12729. doi: 10.1021/jacs.0c04669. Epub 2020 Jul 8.
4
Membrane Anchoring of α-Helical Proteins: Role of Tryptophan.
J Phys Chem B. 2018 Jan 25;122(3):1185-1194. doi: 10.1021/acs.jpcb.7b11227. Epub 2018 Jan 11.
5
Stability and Water Accessibility of the Trimeric Membrane Anchors of the HIV-1 Envelope Spikes.
J Am Chem Soc. 2017 Dec 27;139(51):18432-18435. doi: 10.1021/jacs.7b09352. Epub 2017 Dec 4.

本文引用的文献

2
A Conserved Ectodomain-Transmembrane Domain Linker Motif Tunes the Allosteric Regulation of Cell Surface Receptors.
J Biol Chem. 2016 Aug 19;291(34):17536-46. doi: 10.1074/jbc.M116.733683. Epub 2016 Jun 30.
3
Structural basis for membrane anchoring of HIV-1 envelope spike.
Science. 2016 Jul 8;353(6295):172-175. doi: 10.1126/science.aaf7066. Epub 2016 Jun 23.
4
Characterization of Small Isotropic Bicelles with Various Compositions.
Langmuir. 2016 Jul 5;32(26):6624-37. doi: 10.1021/acs.langmuir.6b00867. Epub 2016 Jun 22.
5
Bicelles and Other Membrane Mimics: Comparison of Structure, Properties, and Dynamics from MD Simulations.
J Phys Chem B. 2015 Dec 31;119(52):15831-43. doi: 10.1021/acs.jpcb.5b08463. Epub 2015 Dec 17.
6
Annular anionic lipids stabilize the integrin αIIbβ3 transmembrane complex.
J Biol Chem. 2015 Mar 27;290(13):8283-93. doi: 10.1074/jbc.M114.623504. Epub 2015 Jan 29.
7
Intermolecular detergent-membrane protein noes for the characterization of the dynamics of membrane protein-detergent complexes.
J Phys Chem B. 2014 Dec 11;118(49):14288-301. doi: 10.1021/jp509137q. Epub 2014 Dec 2.
8
Characterization of membrane protein interactions by isothermal titration calorimetry.
J Mol Biol. 2014 Oct 23;426(21):3670-80. doi: 10.1016/j.jmb.2014.08.020. Epub 2014 Aug 29.
9
Modified lipid and protein dynamics in nanodiscs.
Biochim Biophys Acta. 2013 Apr;1828(4):1222-9. doi: 10.1016/j.bbamem.2012.12.011. Epub 2012 Dec 28.
10
Ser/Thr motifs in transmembrane proteins: conservation patterns and effects on local protein structure and dynamics.
J Membr Biol. 2012 Nov;245(11):717-30. doi: 10.1007/s00232-012-9452-4. Epub 2012 Jul 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验