Suppr超能文献

环状阴离子脂质稳定整合素αIIbβ3跨膜复合物。

Annular anionic lipids stabilize the integrin αIIbβ3 transmembrane complex.

作者信息

Schmidt Thomas, Suk Jae-Eun, Ye Feng, Situ Alan J, Mazumder Parichita, Ginsberg Mark H, Ulmer Tobias S

机构信息

From the Department of Biochemistry & Molecular Biology and Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California 90033 and.

the Department of Medicine, University of California San Diego, La Jolla, California 92093.

出版信息

J Biol Chem. 2015 Mar 27;290(13):8283-93. doi: 10.1074/jbc.M114.623504. Epub 2015 Jan 29.

Abstract

Cationic membrane-proximal amino acids determine the topology of membrane proteins by interacting with anionic lipids that are restricted to the intracellular membrane leaflet. This mechanism implies that anionic lipids interfere with electrostatic interactions of membrane proteins. The integrin αIIbβ3 transmembrane (TM) complex is stabilized by a membrane-proximal αIIb(Arg(995))-β3(Asp(723)) interaction; here, we examine the influence of anionic lipids on this complex. Anionic lipids compete for αIIb(Arg(995)) contacts with β3(Asp(723)) but paradoxically do not diminish the contribution of αIIb(Arg(995))-β3(Asp(723)) to TM complex stability. Overall, anionic lipids in annular positions stabilize the αIIbβ3 TM complex by up to 0.50 ± 0.02 kcal/mol relative to zwitterionic lipids in a headgroup structure-dependent manner. Comparatively, integrin receptor activation requires TM complex destabilization of 1.5 ± 0.2 kcal/mol, revealing a sizeable influence of lipid composition on TM complex stability. We implicate changes in lipid headgroup accessibility to small molecules (physical membrane characteristics) and specific but dynamic protein-lipid contacts in this TM helix-helix stabilization. Thus, anionic lipids in ubiquitous annular positions can benefit the stability of membrane proteins while leaving membrane-proximal electrostatic interactions intact.

摘要

阳离子性的膜近端氨基酸通过与局限于细胞内膜小叶的阴离子脂质相互作用来决定膜蛋白的拓扑结构。这种机制意味着阴离子脂质会干扰膜蛋白的静电相互作用。整合素αIIbβ3跨膜(TM)复合物通过膜近端的αIIb(精氨酸995)-β3(天冬氨酸723)相互作用得以稳定;在此,我们研究阴离子脂质对该复合物的影响。阴离子脂质竞争αIIb(精氨酸995)与β3(天冬氨酸723)的接触,但矛盾的是,这并未减少αIIb(精氨酸995)-β3(天冬氨酸723)对TM复合物稳定性的贡献。总体而言,相对于两性离子脂质,处于环形位置的阴离子脂质以一种依赖于头部基团结构的方式使αIIbβ3 TM复合物的稳定性提高多达0.50±0.02千卡/摩尔。相比之下,整合素受体激活需要TM复合物去稳定化1.5±0.2千卡/摩尔,这揭示了脂质组成对TM复合物稳定性有相当大的影响。我们认为脂质头部基团对小分子的可及性变化(物理膜特性)以及这种TM螺旋 - 螺旋稳定化中特定但动态的蛋白质 - 脂质接触起到了作用。因此,普遍存在于环形位置的阴离子脂质可以在保持膜近端静电相互作用完整的同时,有利于膜蛋白的稳定性。

相似文献

1
Annular anionic lipids stabilize the integrin αIIbβ3 transmembrane complex.
J Biol Chem. 2015 Mar 27;290(13):8283-93. doi: 10.1074/jbc.M114.623504. Epub 2015 Jan 29.
2
The structure of the integrin alphaIIbbeta3 transmembrane complex explains integrin transmembrane signalling.
EMBO J. 2009 May 6;28(9):1351-61. doi: 10.1038/emboj.2009.63. Epub 2009 Mar 12.
4
NMR analysis of the alphaIIb beta3 cytoplasmic interaction suggests a mechanism for integrin regulation.
Proc Natl Acad Sci U S A. 2010 Dec 28;107(52):22481-6. doi: 10.1073/pnas.1015545107. Epub 2010 Dec 14.
6
Comparison of Integrin αIIbβ3 Transmembrane Association in Vesicles and Bicelles.
Biochemistry. 2023 Jun 20;62(12):1858-1863. doi: 10.1021/acs.biochem.3c00177. Epub 2023 Jun 6.
8
Structural basis for integrin alphaIIbbeta3 clustering.
Biochem Soc Trans. 2004 Jun;32(Pt3):412-5. doi: 10.1042/BST0320412.
9
The Integrin Receptor in Biologically Relevant Bilayers: Insights from Molecular Dynamics Simulations.
J Membr Biol. 2017 Aug;250(4):337-351. doi: 10.1007/s00232-016-9908-z. Epub 2016 Jul 27.

引用本文的文献

1
Comparison of Integrin αIIbβ3 Transmembrane Association in Vesicles and Bicelles.
Biochemistry. 2023 Jun 20;62(12):1858-1863. doi: 10.1021/acs.biochem.3c00177. Epub 2023 Jun 6.
2
Dynamic lipid turnover in photoreceptors and retinal pigment epithelium throughout life.
Prog Retin Eye Res. 2022 Jul;89:101037. doi: 10.1016/j.preteyeres.2021.101037. Epub 2021 Dec 29.
5
Insight Into Pathological Integrin αIIbβ3 Activation From Safeguarding The Inactive State.
J Mol Biol. 2021 Apr 2;433(7):166832. doi: 10.1016/j.jmb.2021.166832. Epub 2021 Feb 2.
7
Characterization of Lipid-Protein Interactions and Lipid-Mediated Modulation of Membrane Protein Function through Molecular Simulation.
Chem Rev. 2019 May 8;119(9):6086-6161. doi: 10.1021/acs.chemrev.8b00608. Epub 2019 Apr 12.
8
Multiscale Simulations of Biological Membranes: The Challenge To Understand Biological Phenomena in a Living Substance.
Chem Rev. 2019 May 8;119(9):5607-5774. doi: 10.1021/acs.chemrev.8b00538. Epub 2019 Mar 12.
9
Emerging Diversity in Lipid-Protein Interactions.
Chem Rev. 2019 May 8;119(9):5775-5848. doi: 10.1021/acs.chemrev.8b00451. Epub 2019 Feb 13.
10
Intramembrane ionic protein-lipid interaction regulates integrin structure and function.
PLoS Biol. 2018 Nov 14;16(11):e2006525. doi: 10.1371/journal.pbio.2006525. eCollection 2018 Nov.

本文引用的文献

1
Local Lipid Reorganization by a Transmembrane Protein Domain.
J Phys Chem Lett. 2012 Dec 6;3(23):3498-502. doi: 10.1021/jz301570w. Epub 2012 Nov 15.
2
Characterization of membrane protein interactions by isothermal titration calorimetry.
J Mol Biol. 2014 Oct 23;426(21):3670-80. doi: 10.1016/j.jmb.2014.08.020. Epub 2014 Aug 29.
3
All-atom empirical potential for molecular modeling and dynamics studies of proteins.
J Phys Chem B. 1998 Apr 30;102(18):3586-616. doi: 10.1021/jp973084f.
4
Architecture and membrane interactions of the EGF receptor.
Cell. 2013 Jan 31;152(3):557-69. doi: 10.1016/j.cell.2012.12.030.
6
Construction of covalent membrane protein complexes and high-throughput selection of membrane mimics.
J Am Chem Soc. 2012 Jun 6;134(22):9030-3. doi: 10.1021/ja304247f. Epub 2012 May 24.
8
Biological membranes: the importance of molecular detail.
Trends Biochem Sci. 2011 Sep;36(9):493-500. doi: 10.1016/j.tibs.2011.06.007. Epub 2011 Aug 18.
9
Calcium-dependent phospholipid scrambling by TMEM16F.
Nature. 2010 Dec 9;468(7325):834-8. doi: 10.1038/nature09583. Epub 2010 Nov 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验