Department of Biochemistry &Molecular Biology and Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, 1501 San Pablo Street, Los Angeles, CA 90033, USA.
Sci Rep. 2016 Jul 20;6:29809. doi: 10.1038/srep29809.
In membrane proteins, proline-mediated helix kinks are indispensable for the tight packing of transmembrane (TM) helices. However, kinks invariably affect numerous interhelical interactions, questioning the acceptance of proline substitutions and evolutionary origin of kinks. Here, we present the structural and thermodynamic basis of proline-induced integrin αIIbβ3 TM complex stabilization to understand the introduction of proline kinks in membrane proteins. In phospholipid bicelles, the A711P substitution in the center of the β3 TM helix changes the direction of adjacent helix segments to form a 35 ± 2° angle and predominantly repacks the segment in the inner membrane leaflet due to a swivel movement. This swivel repacks hydrophobic and electrostatic interhelical contacts within intracellular lipids, resulting in an overall TM complex stabilization of -0.82 ± 0.01 kcal/mol. Thus, proline substitutions can directly stabilize membrane proteins and such substitutions are proposed to follow the structural template of integrin αIIbβ3(A711P).
在膜蛋白中,脯氨酸介导的螺旋弯曲对于跨膜(TM)螺旋的紧密堆积是必不可少的。然而,弯曲不可避免地会影响许多螺旋间的相互作用,这使得人们对脯氨酸取代的接受程度和弯曲的进化起源提出了质疑。在这里,我们提出了整合素 αIIbβ3TM 复合物稳定的脯氨酸诱导的结构和热力学基础,以了解膜蛋白中脯氨酸弯曲的引入。在磷脂双分子层中,β3TM 螺旋中心的 A711P 取代会改变相邻螺旋段的方向,形成 35±2°的角度,并由于旋转运动主要将该段螺旋重新组装在内质网膜层。这种旋转重新组装了细胞内脂质中的疏水性和静电螺旋间接触,导致 TM 复合物整体稳定度增加了-0.82±0.01kcal/mol。因此,脯氨酸取代可以直接稳定膜蛋白,并且这些取代被认为遵循整合素 αIIbβ3(A711P)的结构模板。