Templeton David W, Sluiter Justin B, Sluiter Amie, Payne Courtney, Crocker David P, Tao Ling, Wolfrum Ed
National Bioenergy Center, National Renewable Energy Laboratory, 15013 Denver West Pkwy., Golden, CO 80401-3393 USA.
Biotechnol Biofuels. 2016 Oct 18;9:223. doi: 10.1186/s13068-016-0621-z. eCollection 2016.
In an effort to find economical, carbon-neutral transportation fuels, biomass feedstock compositional analysis methods are used to monitor, compare, and improve biofuel conversion processes. These methods are empirical, and the analytical variability seen in the feedstock compositional data propagates into variability in the conversion yields, component balances, mass balances, and ultimately the minimum ethanol selling price (MESP). We report the average composition and standard deviations of 119 individually extracted National Institute of Standards and Technology (NIST) bagasse [Reference Material (RM) 8491] run by seven analysts over 7 years. Two additional datasets, using bulk-extracted bagasse (containing 58 and 291 replicates each), were examined to separate out the effects of batch, analyst, sugar recovery standard calculation method, and extractions from the total analytical variability seen in the individually extracted dataset. We believe this is the world's largest NIST bagasse compositional analysis dataset and it provides unique insight into the long-term analytical variability. Understanding the long-term variability of the feedstock analysis will help determine the minimum difference that can be detected in yield, mass balance, and efficiency calculations.
The long-term data show consistent bagasse component values through time and by different analysts. This suggests that the standard compositional analysis methods were performed consistently and that the bagasse RM itself remained unchanged during this time period. The long-term variability seen here is generally higher than short-term variabilities. It is worth noting that the effect of short-term or long-term feedstock compositional variability on MESP is small, about $0.03 per gallon.
The long-term analysis variabilities reported here are plausible minimum values for these methods, though not necessarily average or expected variabilities. We must emphasize the importance of training and good analytical procedures needed to generate this data. When combined with a robust QA/QC oversight protocol, these empirical methods can be relied upon to generate high-quality data over a long period of time.
为了寻找经济、碳中和的运输燃料,生物质原料成分分析方法被用于监测、比较和改进生物燃料转化过程。这些方法是经验性的,原料成分数据中存在的分析变异性会传播到转化产率、成分平衡、质量平衡以及最终的最低乙醇销售价格(MESP)的变异性中。我们报告了由七位分析师在7年时间内对119份单独提取的美国国家标准与技术研究院(NIST)甘蔗渣[参考物质(RM)8491]进行分析得到的平均成分和标准偏差。另外还检查了两个使用批量提取甘蔗渣的数据集(每个数据集分别包含58个和291个重复样本),以从单独提取数据集中观察到的总分析变异性中分离出批次、分析师、糖回收率标准计算方法以及提取过程的影响。我们认为这是世界上最大的NIST甘蔗渣成分分析数据集,它为长期分析变异性提供了独特的见解。了解原料分析的长期变异性将有助于确定在产率、质量平衡和效率计算中能够检测到的最小差异。
长期数据显示,甘蔗渣成分值随时间和不同分析师的分析保持一致。这表明标准成分分析方法的执行是一致的,并且在此时间段内甘蔗渣参考物质本身保持不变。这里观察到的长期变异性通常高于短期变异性。值得注意的是,短期或长期原料成分变异性对MESP的影响很小,约为每加仑0.03美元。
这里报告的长期分析变异性是这些方法可能的最小值,尽管不一定是平均值或预期变异性。我们必须强调生成这些数据所需的培训和良好分析程序的重要性。当与强大的质量保证/质量控制监督协议相结合时,这些经验性方法可以长期依赖以生成高质量数据。