Sidarala Vaibhav, Kowluru Anjaneyulu
Beta-Cell Biochemistry Laboratory, John D. Dingell VA Medical Center, Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI 48201. United States.
B-4237 Research Service, John D. Dingell VA Medical Center, 4646 John R, Detroit, MI 48201. United States.
Recent Pat Endocr Metab Immune Drug Discov. 2017;10(2):76-84. doi: 10.2174/1872214810666161020154905.
Glucose-stimulated insulin secretion (GSIS) from the pancreatic β-cell involves several intracellular metabolic events which lead to the translocation of insulin granules towards the membrane for fusion and release. It is well established that loss of β-cell function and decreased GSIS underlie the pathogenesis of diabetes. Evidence from several laboratories, including our own, demonstrated requisite roles of Rac1 and phagocyte-like NADPH oxidase (Nox2)-derived reactive oxygen species (ROS) in optimal function of the pancreatic β-cell, including GSIS. However, it is becoming increasingly clear that prolonged exposure of β-cells to hyperglycemic conditions, leads to sustained activation of Rac1-Nox2 signaling axis culminating in excessive generation of intracellular ROS (oxidative stress) and β-cell dysregulation and demise. Such "cytotoxic" effects of ROS appear to be mediated via the stress-activated protein kinases/mitogen-activated protein kinases (SAPK/MAPK) signaling pathways.
This review discusses our current understanding of regulation and functions of the conventional MAPKs, namely, ERK1/2, JNK1/2 and p38MAPK.
The MAPK pathways are activated in the presence of various stress stimuli including intracellular ROS, via distinct signaling cascades. Once activated, MAPKs participate in specific intracellular signaling processes via interaction with several downstream kinases including the MAPKactivated protein kinases (MAPKAPKs) and transcription factors including c-jun and p53. We have provided an overview of existing evidence in the islet β-cell on the regulatory roles of these MAPKs in mediating cellular responses to alterations in intracellularly generated ROS, which is mediated by the Rac1-Nox2 signaling module. Additionally, we enlisted recent patents developed to improve β-cell function in diabetes and novel pharmacological agents that target oxidative stress and MAPK pathways.
胰腺β细胞的葡萄糖刺激胰岛素分泌(GSIS)涉及多个细胞内代谢事件,这些事件导致胰岛素颗粒向细胞膜转运以进行融合和释放。众所周知,β细胞功能丧失和GSIS降低是糖尿病发病机制的基础。包括我们自己实验室在内的多个实验室的证据表明,Rac1和吞噬细胞样NADPH氧化酶(Nox2)衍生的活性氧(ROS)在胰腺β细胞的最佳功能(包括GSIS)中发挥着必要作用。然而,越来越清楚的是,β细胞长期暴露于高血糖条件下,会导致Rac1 - Nox2信号轴持续激活,最终导致细胞内ROS过度生成(氧化应激)以及β细胞失调和死亡。ROS的这种“细胞毒性”作用似乎是通过应激激活蛋白激酶/丝裂原激活蛋白激酶(SAPK/MAPK)信号通路介导的。
本综述讨论了我们目前对传统MAPK(即ERK1/2、JNK1/2和p38MAPK)的调节和功能的理解。
MAPK通路在包括细胞内ROS在内的各种应激刺激存在时,通过不同的信号级联被激活。一旦被激活,MAPK通过与包括MAPK激活的蛋白激酶(MAPKAPK)在内的几种下游激酶以及包括c - jun和p53在内的转录因子相互作用,参与特定的细胞内信号传导过程。我们概述了胰岛β细胞中关于这些MAPK在介导细胞对由Rac1 - Nox2信号模块介导的细胞内产生的ROS变化的反应中的调节作用的现有证据。此外,我们列举了最近为改善糖尿病β细胞功能而开发的专利以及针对氧化应激和MAPK通路的新型药物制剂。