Brynn Hibbert D, Thordarson Pall
School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia.
School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia and The Australian Centre for Nanomedicine and the ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of New South Wales, Sydney, NSW 2052, Australia.
Chem Commun (Camb). 2016 Oct 25;52(87):12792-12805. doi: 10.1039/c6cc03888c.
Data analysis is central to understanding phenomena in host-guest chemistry. We describe here recent developments in this field starting with the revelation that the popular Job plot method is inappropriate for most problems in host-guest chemistry and that the focus should instead be on systematically fitting data and testing all reasonable binding models. We then discuss approaches for estimating uncertainties in binding studies using case studies and simulations to highlight key issues. Related to this is the need for ready access to data and transparency in the methodology or software used, and we demonstrate an example a webportal () that aims to address this issue. We conclude with a list of best-practice protocols for data analysis in supramolecular chemistry that could easily be translated to other related problems in chemistry including measuring rate constants or drug IC values.
数据分析是理解主客体化学中各种现象的核心。我们在此描述该领域的最新进展,首先揭示了流行的乔布曲线法不适用于主客体化学中的大多数问题,而应将重点放在系统地拟合数据和测试所有合理的结合模型上。然后,我们通过案例研究和模拟来讨论在结合研究中估计不确定性的方法,以突出关键问题。与此相关的是需要能够方便地获取数据以及所使用方法或软件的透明度,我们展示了一个旨在解决此问题的网络门户()示例。我们最后列出了超分子化学数据分析的最佳实践方案清单,这些方案可以很容易地转化为化学中其他相关问题,包括测量速率常数或药物IC值。