Department of Chemistry, Louisiana State University , Baton Rouge, Louisiana 70820, United States.
Centro Universitario de Tonalá, Universidad de Guadalajara , Tonalá, Jalisco 45425, México.
ACS Appl Mater Interfaces. 2016 Nov 16;8(45):31295-31303. doi: 10.1021/acsami.6b09589. Epub 2016 Nov 2.
We report an alternative green strategy based on deep-eutectic solvents (DES) to deliver multiwalled carbon nanotubes (MWCNTs) for a bottom-up approach that allows for the selective interfacial functionalization of nonaqueous poly(high internal phase emulsions), poly(HIPEs). The formation and polymerization of methacrylic and styrenic HIPEs were possible through stabilization with nitrogen doped carbon nanotube (CN) and surfactant mixtures using a urea-choline chloride DES as a delivering phase. Subtle changes in CN concentration (less than 0.2 wt % to the internal phase) produced important changes in the macroporous monolith functionalization, which in turn led to increased monolith hydrophobicity and pore openness. These materials displayed great oleophilicity with water contact angles as high as 140° making them apt for biodiesel, diesel, and gasoline fuel sorption applications. Overall, styrene divinylbenzene (StDvB) based poly(HIPEs) showed hydrophobicity and fuel sorption capacities as high as 4.8 (g/g). Pore hierarchy, namely pore openness, regulated sorption capacity, and sorption times where greater openness resulted in faster sorption and increased sorption capacity. Monoliths were subject to 20 sorption-desorption cycles demonstrating recyclability and stable sorption capacity. Finally, CN/surfactant hybrids made it possible to reduce surfactant requirements for successful HIPE formation and stabilization during polymerization. All poly(HIPEs) retained acceptable conversion as a function of CN loading nearing 90% or better with thermal stability as high as 283 °C.
我们报告了一种基于深共熔溶剂(DES)的替代绿色策略,用于输送多壁碳纳米管(MWCNTs),以实现自下而上的方法,从而实现非水多相聚(高内相乳液)的选择性界面功能化。氮掺杂碳纳米管(CN)和表面活性剂混合物的稳定作用,以及尿素-氯化胆碱 DES 的输送相,使得甲基丙烯酸酯和苯乙烯 HIPEs 的形成和聚合成为可能。CN 浓度的微小变化(低于内部相的 0.2wt%)对大孔整体功能化产生了重要影响,进而导致整体的疏水性和孔径开放性增加。这些材料具有很高的亲油性,水接触角高达 140°,非常适合生物柴油、柴油和汽油燃料的吸附应用。总的来说,基于苯乙烯二乙烯基苯(StDvB)的聚(HIPEs)显示出高达 4.8(g/g)的疏水性和燃料吸附能力。孔结构,即孔径开放性,调节了吸附能力和吸附时间,较大的开放性导致更快的吸附和更高的吸附能力。整体在经历 20 次吸附-解吸循环后仍具有可回收性和稳定的吸附能力。最后,CN/表面活性剂混合物使得在聚合过程中成功形成和稳定 HIPE 所需的表面活性剂用量减少。所有聚(HIPEs)的转化率都可接受,随着 CN 负载量的增加,转化率接近 90%或更高,热稳定性高达 283°C。