Cai Xiangyu, Zhou Yandong, Nwokonko Robert M, Loktionova Natalia A, Wang Xianming, Xin Ping, Trebak Mohamed, Wang Youjun, Gill Donald L
From the Department of Cellular and Molecular Physiology, the Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033 and.
From the Department of Cellular and Molecular Physiology, the Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033 and
J Biol Chem. 2016 Dec 9;291(50):25764-25775. doi: 10.1074/jbc.M116.758813. Epub 2016 Oct 25.
Orai channels mediate store-operated Ca signals crucial in regulating transcription in many cell types, and implicated in numerous immunological and inflammatory disorders. Despite their central importance, controversy surrounds the basic subunit structure of Orai channels, with several biochemical and biophysical studies suggesting a tetrameric structure yet crystallographic evidence indicating a hexamer. We systematically investigated the subunit configuration of the functional Orai1 channel, generating a series of tdTomato-tagged concatenated Orai1 channel constructs (dimers to hexamers) expressed in CRISPR-derived ORAI1 knock-out HEK cells, stably expressing STIM1-YFP. Surface biotinylation demonstrated that the full-length concatemers were surface membrane-expressed. Unexpectedly, Orai1 dimers, trimers, tetramers, pentamers, and hexamers all mediated similar and substantial store-operated Ca entry. Moreover, each Orai1 concatemer mediated Ca currents with inward rectification and reversal potentials almost identical to those observed with expressed Orai1 monomer. In Orai1 tetramers, subunit-specific replacement with Orai1 E106A "pore-inactive" subunits revealed that functional channels utilize only the N-terminal dimer from the tetramer. In contrast, Orai1 E106A replacement in Orai1 hexamers established that all the subunits can contribute to channel formation, indicating a hexameric channel configuration. The critical Ca selectivity filter-forming Glu-106 residue may mediate Orai1 channel assembly around a central Ca ion within the pore. Thus, multiple E106A substitutions in the Orai1 hexamer may promote an alternative "trimer-of-dimers" channel configuration in which the C-terminal E106A subunits are excluded from the hexameric core. Our results argue strongly against a tetrameric configuration for Orai1 channels and indicate that the Orai1 channel functions as a hexamer.
Orai通道介导在多种细胞类型中对调节转录至关重要的储存操纵性钙信号,并与多种免疫和炎症性疾病有关。尽管它们至关重要,但围绕Orai通道的基本亚基结构仍存在争议,多项生化和生物物理研究表明其为四聚体结构,而晶体学证据则显示为六聚体。我们系统地研究了功能性Orai1通道的亚基配置,构建了一系列在CRISPR衍生的ORAI1基因敲除的HEK细胞中表达的、带有tdTomato标签的串联Orai1通道构建体(二聚体至六聚体),这些细胞稳定表达STIM1-YFP。表面生物素化表明全长串联体在细胞膜表面表达。出乎意料的是,Orai1二聚体、三聚体、四聚体、五聚体和六聚体均介导相似且大量的储存操纵性钙内流。此外,每个Orai1串联体介导的钙电流具有内向整流特性,其反转电位与表达的Orai1单体几乎相同。在Orai1四聚体中,用Orai1 E106A“孔失活”亚基进行亚基特异性替换表明,功能性通道仅利用四聚体中的N端二聚体。相比之下,在Orai1六聚体中进行Orai1 E106A替换表明所有亚基都可参与通道形成,这表明其为六聚体通道配置。关键的形成钙选择性过滤器的Glu-106残基可能介导Orai1通道围绕孔内的中心钙离子进行组装。因此,Orai1六聚体中的多个E106A替换可能促进一种替代的“二聚体三聚体”通道配置,其中C端E106A亚基被排除在六聚体核心之外。我们的结果强烈反对Orai1通道为四聚体配置的观点,并表明Orai1通道以六聚体形式发挥功能。