Suppr超能文献

通过追踪大规模社交网络中的真实信息流评估多个传播者的集体影响

Collective Influence of Multiple Spreaders Evaluated by Tracing Real Information Flow in Large-Scale Social Networks.

作者信息

Teng Xian, Pei Sen, Morone Flaviano, Makse Hernán A

机构信息

Levich Institute and Physics Department, City College of New York, New York, NY 10031, USA.

Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY 10032, USA.

出版信息

Sci Rep. 2016 Oct 26;6:36043. doi: 10.1038/srep36043.

Abstract

Identifying the most influential spreaders that maximize information flow is a central question in network theory. Recently, a scalable method called "Collective Influence (CI)" has been put forward through collective influence maximization. In contrast to heuristic methods evaluating nodes' significance separately, CI method inspects the collective influence of multiple spreaders. Despite that CI applies to the influence maximization problem in percolation model, it is still important to examine its efficacy in realistic information spreading. Here, we examine real-world information flow in various social and scientific platforms including American Physical Society, Facebook, Twitter and LiveJournal. Since empirical data cannot be directly mapped to ideal multi-source spreading, we leverage the behavioral patterns of users extracted from data to construct "virtual" information spreading processes. Our results demonstrate that the set of spreaders selected by CI can induce larger scale of information propagation. Moreover, local measures as the number of connections or citations are not necessarily the deterministic factors of nodes' importance in realistic information spreading. This result has significance for rankings scientists in scientific networks like the APS, where the commonly used number of citations can be a poor indicator of the collective influence of authors in the community.

摘要

识别能使信息流最大化的最具影响力的传播者是网络理论中的核心问题。最近,一种名为“集体影响力(CI)”的可扩展方法通过集体影响力最大化被提了出来。与分别评估节点重要性的启发式方法不同,CI方法考察多个传播者的集体影响力。尽管CI适用于渗流模型中的影响力最大化问题,但检验其在现实信息传播中的有效性仍然很重要。在这里,我们考察了包括美国物理学会、脸书、推特和LiveJournal在内的各种社会和科学平台中的现实世界信息流。由于实证数据无法直接映射到理想的多源传播,我们利用从数据中提取的用户行为模式来构建“虚拟”信息传播过程。我们的结果表明,由CI选择的传播者集合能够引发更大规模的信息传播。此外,诸如连接数或引用数等局部度量不一定是现实信息传播中节点重要性的决定性因素。这一结果对于在像美国物理学会这样的科学网络中对科学家进行排名具有重要意义,在该网络中,常用的引用数可能并不是社区中作者集体影响力的一个好指标。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c073/5080555/13541bc11b89/srep36043-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验