Suppr超能文献

控制氧化锌的形貌和缺陷密度以改善染料敏化太阳能电池性能

Control of morphology and defect density in zinc oxide for improved dye-sensitized solar cells.

作者信息

Kim Seul Ah, Abbas Muhammad Awais, Lee Lanlee, Kang Byungwuk, Kim Hahkjoon, Bang Jin Ho

机构信息

Department of Bionano Technology, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan, Gyeonggi-do 15588, Republic of Korea.

Department of Advanced Materials Engineering, Hanyang University, Republic of Korea.

出版信息

Phys Chem Chem Phys. 2016 Nov 9;18(44):30475-30483. doi: 10.1039/c6cp04204j.

Abstract

While zinc oxide (ZnO) with a mesoporous network has long been explored for adsorption of dyes and as an electron-transporting medium in dye-sensitized solar cells (DSSCs), the performance of ZnO-based DSSCs remains unsatisfactory. Despite the importance of understanding the surface characteristics of ZnO in DSSC applications, most of the studies relevant to ZnO-based DSSCs are focused on the synthesis of unique nanostructures of ZnO. In this study, we not only introduce a novel disk-shaped ZnO nanostructure, but also provide insight into the distinctive surface properties of ZnO and its influence on DSSC performance. When utilized in DSSCs, the mesoporous ZnO nanodisk yields 60% better power conversion efficiency (PCE) compared to commercial ZnO nanoparticles, which is attributed to less surface and bulk trap densities as concluded by an in-depth open-circuit voltage decay (OCVD) analysis and electrochemical impedance spectroscopy (EIS). Another aspect that contributes to the higher PCE is the better connectivity of primary particles that join together to form secondary disk-shaped particles. Furthermore, a 40% improvement in the PCE was observed by coating the mesoporous ZnO nanodisk with TiO, which results from the passivation of the surface defects that aid in suppressing the interfacial charge recombination.

摘要

尽管具有介孔网络的氧化锌(ZnO)长期以来一直被用于染料吸附以及作为染料敏化太阳能电池(DSSC)中的电子传输介质,但基于ZnO的DSSC的性能仍不尽人意。尽管了解ZnO在DSSC应用中的表面特性很重要,但大多数与基于ZnO的DSSC相关的研究都集中在ZnO独特纳米结构的合成上。在本研究中,我们不仅引入了一种新型的盘状ZnO纳米结构,还深入了解了ZnO独特的表面性质及其对DSSC性能的影响。当用于DSSC时,介孔ZnO纳米盘的功率转换效率(PCE)比商业ZnO纳米颗粒高60%,这归因于通过深入的开路电压衰减(OCVD)分析和电化学阻抗谱(EIS)得出的表面和体陷阱密度较低。导致较高PCE的另一个因素是初级颗粒连接在一起形成次级盘状颗粒时具有更好的连通性。此外,通过用TiO包覆介孔ZnO纳米盘,观察到PCE提高了40%,这是由于表面缺陷的钝化有助于抑制界面电荷复合。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验