Department of Polymer Science & Engineering, Conte Center for Polymer Research, University of Massachusetts Amherst , 120 Governors Drive, Amherst, Massachusetts 01003, United States.
Acc Chem Res. 2016 Nov 15;49(11):2478-2488. doi: 10.1021/acs.accounts.6b00402. Epub 2016 Oct 26.
Conjugated polymer zwitterions (CPZs) are neutral, hydrophilic, polymer semiconductors. The pendent zwitterions, viewed as side chain dipoles, impart solubility in polar solvents for solution processing, and open opportunities as interfacial components of optoelectronic devices, for example, between metal electrodes and organic semiconductor active layers. Such interlayers are crucial for defining the performance of organic electronic devices, e.g., field-effect transistors (OFETs), light-emitting diodes (OLEDs), and photovoltaics (OPVs), all of which consist of multilayer structures. The interlayers reduce the Schottky barrier height and thus improve charge injection in OFETs and OLEDs. In OPVs, the interlayers serve to increase the built-in electric potential difference (V) across the active layer, ensuring efficient extraction of photogenerated charge carriers. In general, polar and even charged electronically active polymers have gained recognition for their ability to modify metal/semiconductor interfaces to the benefit of organic electronics. While conjugated polyelectrolytes (CPEs) as interlayer materials are well-documented, open questions remain about the role of mobile counterions in CPE-containing devices. CPZs possess the processing advantages of CPEs, but as neutral molecules lack any potential complications associated with counterions. The electronic implications of CPZs on metal electrodes stem from the orientation of the zwitterion dipole moment in close proximity to the metal surface, and the resultant surface-induced polarization. This generates an interfacial dipole (Δ) at the CPZ/metal interface, altering the work function of the electrode, as confirmed by ultraviolet photoelectron spectroscopy (UPS), and improving device performance. An ideal cathode interlayer would reduce electrode work function, have orthogonal processability to the active layer, exhibit good film forming properties (i.e., wettability/uniformity), prevent exciton quenching, possess optimal electron affinity that neither limits the work function reduction nor impedes the charge extraction, transport electrons selectively, and exhibit long-term stability. Our recent discoveries show that CPZs achieve many of these attributes, and are poised for further expansion and development in the interfacial science of organic electronics. This Account reviews a recent collaboration that began with the synthesis of CPZs and a study of their structural and electronic properties on metals, then extended to their application as interlayer materials for OPVs. We discuss CPZ structure-property relationships based on several material platforms, ranging from homopolymers to copolymers, and from materials with intrinsic p-type conjugated backbones to those with intrinsic n-type conjugated backbones. We discuss key components of such interlayers, including (i) the origin of work function reduction of CPZ interlayers on metals; (ii) the role of the frontier molecular orbital energy levels and their trade-offs in optimizing electronic and device properties; and (iii) the role of polymer conductivity type and the magnitude of charge carrier mobility. Our motivation is to present our prior use and current understanding of CPZs as interlayer materials in organic electronics, and describe outstanding issues and future potential directions.
共轭聚合物两性离子(CPZs)是中性、亲水性的聚合物半导体。侧链偶极子的悬挂两性离子赋予了其在极性溶剂中的可溶性,为光电设备的界面组分提供了机会,例如金属电极和有机半导体活性层之间。这些层对于定义有机电子设备的性能至关重要,例如场效应晶体管(OFET)、发光二极管(OLED)和光伏器件(OPV),它们都由多层结构组成。层间可以降低肖特基势垒高度,从而改善 OFET 和 OLED 中的电荷注入。在 OPV 中,层间可以增加活性层之间的内置电势差(V),确保有效提取光生载流子。一般来说,具有极性甚至电荷的电子活性聚合物因其能够修饰金属/半导体界面以有利于有机电子而受到认可。虽然共轭聚电解质(CPE)作为层间材料已得到充分证实,但在含有 CPE 的器件中移动抗衡离子的作用仍存在一些问题。CPZs 具有 CPE 的加工优势,但作为中性分子,缺乏与抗衡离子相关的任何潜在复杂性。CPZs 对金属电极的电子影响源于两性离子偶极子在靠近金属表面的位置取向,以及由此产生的表面诱导极化。这会在 CPZ/金属界面处产生一个界面偶极子(Δ),从而改变电极的功函数,这一点已通过紫外光电子能谱(UPS)得到证实,并改善了器件性能。理想的阴极层间材料会降低电极功函数,与活性层具有正交的加工性能,表现出良好的成膜性能(即润湿性/均匀性),防止激子猝灭,具有最佳的电子亲和力,既不会限制功函数降低,也不会阻碍电荷提取、选择性传输电子,并具有长期稳定性。我们最近的发现表明,CPZs 实现了许多这些特性,并有望在有机电子界面科学中进一步扩展和发展。本综述回顾了最近的一项合作,该合作始于 CPZs 的合成及其在金属上的结构和电子特性研究,然后扩展到将其用作 OPV 的层间材料。我们根据几种材料平台讨论了 CPZ 的结构-性能关系,范围从均聚物到共聚物,从具有本征 p 型共轭骨架的材料到具有本征 n 型共轭骨架的材料。我们讨论了这些层间材料的关键组成部分,包括(i)CPZ 层间材料在金属上降低功函数的起源;(ii)前沿分子轨道能级的作用及其在优化电子和器件性能方面的权衡;(iii)聚合物电导率类型和载流子迁移率的作用。我们的动机是介绍我们之前在有机电子中使用 CPZ 作为层间材料的情况以及目前的理解,并描述突出问题和未来的潜在方向。