Suppr超能文献

电活性离子烯:有机光伏中的高效夹层材料。

Electroactive Ionenes: Efficient Interlayer Materials in Organic Photovoltaics.

作者信息

Liu Yao, Russell Thomas P

机构信息

State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.

Polymer Science and Engineering Department, University of Massachusetts Amherst, 120 Governors Drive, Amherst, Massachusetts 01003, United States.

出版信息

Acc Chem Res. 2022 Apr 19;55(8):1097-1108. doi: 10.1021/acs.accounts.1c00749. Epub 2022 Feb 21.

Abstract

ConspectusOrganic photovoltaics (OPVs) have the advantages of being lightweight, mechanically flexible, and solution-processable over large areas, and for decades, they have been the focus of the academic and industrial communities. Recent progress in the design of high-performance organic semiconductors and device optimization has promoted solar cell efficiencies of up to 19%, showing great promise for commercialization. Optimally designed OPVs are achieved using a bicontinuous interpenetrating network of donor and acceptor materials in between two charge-collecting electrodes. Charge extraction and transport between metal electrodes and organic semiconductors are crucial to device operation. The energy-level mismatch when metal electrodes and organic semiconductors are in contact usually induces additional energy barriers and resultant inefficient charge transport and collection, leading to charge carrier recombination at the interface and inferior device performance. To align energy levels at the interface, interlayer materials and their integration into devices have emerged as a widely used strategy to promote the performance of solar cell devices. Interlayer materials have the ability to modify the work functions (WFs) of metal electrodes, holding the potential to enhance the built-in electrostatic field () of the devices and suppress the charge recombination loss, which is beneficial to improving the open circuit voltage (), short circuit current density (), and fill factor (FF) of the solar cells.Organic interlayer materials have recently come into focus for fundamental study and practical development because of their diverse molecular design and superior solution processability. Tremendous effort has been devoted to exploring novel organic interlayer materials to achieve all-solution-processed multilayer solar cells. Such interlayer materials usually have orthogonal solubilities relative to the photoactive layer materials, working as multifunctional interfacial layers to manipulate the mechanical and electrical contacts in solar cell devices. Ionenes are a unique class of polyelectrolytes wherein the ionic species reside within the polymer backbone rather than as pendant groups. In ionenes, the charge density is high in comparison to that of other polyelectrolytes, and the periodicity of the charges is easily controlled, providing a tunable density of dipole moments. Ionenes can be readily synthesized from 3° diamines and α,ω-dihaloalkanes to generate polymer chains of ammonium cations connected by flexible hydrocarbon linkages with mobile anions. However, the requisite building blocks of ionenes are not limited to such molecules. Recent advances in combining ionenes with conjugated molecules to generate electroactive ionenes have catalyzed a great amount of interest in such polymers for organic electronic devices.In this Account, we first introduce the molecular design and synthesis of electroactive ionenes. Following this, we will discuss the mechanism and effect of ionenes on the modification of metal electrodes. We then review the strategies for controlling the morphology of ionene interlayers. Finally, we compare the doping effect, conductivity, and charge transport of some representative ionenes and their performance as interlayers in solar cell devices. We present our current understanding based on recent progress and outstanding issues of interlayer materials in OPVs and to propose future directions and opportunities.

摘要

综述

有机光伏(OPV)具有重量轻、机械柔韧性好以及可大面积溶液加工的优点,几十年来一直是学术界和工业界的关注焦点。高性能有机半导体设计和器件优化方面的最新进展已将太阳能电池效率提高到了19%,显示出巨大的商业化潜力。通过在两个电荷收集电极之间使用供体和受体材料的双连续互穿网络可实现优化设计的OPV。金属电极和有机半导体之间的电荷提取和传输对器件运行至关重要。金属电极与有机半导体接触时的能级失配通常会引发额外的能垒以及由此导致的低效电荷传输和收集,进而导致界面处的电荷载流子复合以及器件性能不佳。为了使界面处的能级对齐,层间材料及其在器件中的集成已成为一种广泛使用的提高太阳能电池器件性能的策略。层间材料有能力改变金属电极的功函数(WF),具有增强器件内建静电场()并抑制电荷复合损失的潜力,这有利于提高太阳能电池的开路电压()、短路电流密度()和填充因子(FF)。

由于其多样的分子设计和优异的溶液加工性能,有机层间材料最近成为基础研究和实际开发的焦点。人们投入了大量精力来探索新型有机层间材料以实现全溶液加工的多层太阳能电池。此类层间材料通常相对于光活性层材料具有正交溶解性,作为多功能界面层来操控太阳能电池器件中的机械和电接触。离子烯是一类独特的聚电解质,其中离子物种存在于聚合物主链中而非作为侧基。与其他聚电解质相比,离子烯中的电荷密度较高,且电荷的周期性易于控制,可提供可调的偶极矩密度。离子烯可由叔二胺和α,ω - 二卤代烷烃轻松合成,以生成由柔性烃链连接铵阳离子与可移动阴离子的聚合物链。然而,离子烯所需的结构单元不限于此类分子。将离子烯与共轭分子结合以生成电活性离子烯的最新进展引发了人们对此类聚合物在有机电子器件方面的极大兴趣。

在本综述中,我们首先介绍电活性离子烯的分子设计与合成。在此之后,我们将讨论离子烯对金属电极改性的机理和效果。然后我们回顾控制离子烯层间形态的策略。最后,我们比较一些代表性离子烯的掺杂效应、导电性和电荷传输以及它们作为太阳能电池器件中层间材料的性能。我们基于OPV中层间材料的最新进展和突出问题阐述我们目前的理解,并提出未来的方向和机遇。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验