Suppr超能文献

有机给体-受体配合物作为新型有机半导体。

Organic Donor-Acceptor Complexes as Novel Organic Semiconductors.

机构信息

Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing University of Posts & Telecommunications , 9 Wenyuan Road, Nanjing 210023, China.

Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, China.

出版信息

Acc Chem Res. 2017 Jul 18;50(7):1654-1662. doi: 10.1021/acs.accounts.7b00124. Epub 2017 Jun 13.

Abstract

Organic donor-acceptor (DA) complexes have attracted wide attention in recent decades, resulting in the rapid development of organic binary system electronics. The design and synthesis of organic DA complexes with a variety of component structures have mainly focused on metallicity (or even superconductivity), emission, or ferroelectricity studies. Further efforts have been made in high-performance electronic investigations. The chemical versatility of organic semiconductors provides DA complexes with a great number of possibilities for semiconducting applications. Organic DA complexes extend the semiconductor family and promote charge separation and transport in organic field-effect transistors (OFETs) and organic photovoltaics (OPVs). In OFETs, the organic complex serves as an active layer across extraordinary charge pathways, ensuring the efficient transport of induced charges. Although an increasing number of organic semiconductors have been reported to exhibit good p- or n-type properties (mobilities higher than 1 or even 10 cm V s), critical scientific challenges remain in utilizing the advantages of existing semiconductor materials for more and wider applications while maintaining less complicated synthetic or device fabrication processes. DA complex materials have revealed new insight: their unique molecular packing and structure-property relationships. The combination of donors and acceptors could offer practical advantages compared with their unimolecular materials. First, growing crystals of DA complexes with densely packed structures will reduce impurities and traps from the self-assembly process. Second, complexes based on the original structural components could form superior mixture stacking, which can facilitate charge transport depending on the driving force in the coassembly process. Third, the effective use of organic semiconductors can lead to tunable band structures, allowing the operation mode (p- or n-type) of the transistor to be systematically controlled by changing the components. Finally, theoretical calculations based on cocrystals with unique stacking could widen our understanding of structure-property relationships and in turn help us design high-performance semiconductors based on DA complexes. In this Account, we focus on discussing organic DA complexes as a new class of semiconducting materials, including their design, growth methods, packing modes, charge-transport properties, and structure-property relationships. We have also fabricated and investigated devices based on these binary crystals. This interdisciplinary work combines techniques from the fields of self-assembly, crystallography, condensed-matter physics, and theoretical chemistry. Researchers have designed new complex systems, including donor and acceptor compounds that self-assemble in feasible ways into highly ordered cocrystals. We demonstrate that using this crystallization method can easily realize ambipolar or unipolar transport. To further improve device performance, we propose several design strategies, such as using new kinds of donors and acceptors, modulating the energy alignment of the donor (ionization potential, IP) and acceptor (electron affinity, EA) components, and extending the π-conjugated backbones. In addition, we have found that when we use molecular "doping" (2:1 cocrystallization), the charge-transport nature of organic semiconductors can be switched from hole-transport-dominated to electron-transport-dominated. We expect that the formation of cocrystals through the complexation of organic donor and acceptor species will serve as a new strategy to develop semiconductors for organic electronics with superior performances over their corresponding individual components.

摘要

有机给体-受体(DA)配合物在近几十年引起了广泛关注,这导致了有机双元体系电子学的快速发展。具有各种组分结构的有机 DA 配合物的设计和合成主要集中在金属性(甚至超导性)、发光或铁电性研究上。进一步的努力集中在高性能电子学研究上。有机半导体的化学多功能性为 DA 配合物提供了大量的半导体应用可能性。有机 DA 配合物扩展了半导体家族,并促进了有机场效应晶体管(OFET)和有机光伏器件(OPV)中的电荷分离和输运。在 OFET 中,有机配合物作为活性层横跨非凡的电荷途径,确保感应电荷的有效传输。尽管越来越多的有机半导体被报道表现出良好的 p 型或 n 型特性(迁移率高于 1 甚至 10 cm V s),但在利用现有半导体材料的优势实现更多和更广泛的应用的同时,保持更简单的合成或器件制造工艺,仍然存在关键的科学挑战。DA 配合物材料揭示了新的见解:它们独特的分子堆积和结构-性能关系。与它们的单分子材料相比,供体和受体的组合可能具有实际优势。首先,通过自组装过程生长具有致密堆积结构的 DA 配合物晶体将减少杂质和陷阱。其次,基于原始结构组件的配合物可以形成优越的混合堆积,这可以根据共组装过程中的驱动力促进电荷传输。第三,有效利用有机半导体可以导致可调谐的能带结构,允许通过改变组件来系统地控制晶体管的工作模式(p 型或 n 型)。最后,基于具有独特堆积的共晶的理论计算可以拓宽我们对结构-性能关系的理解,进而帮助我们设计基于 DA 配合物的高性能半导体。在本报告中,我们重点讨论了有机 DA 配合物作为一类新的半导体材料,包括它们的设计、生长方法、堆积模式、电荷输运性质和结构-性能关系。我们还基于这些二元晶体进行了器件的制备和研究。这项跨学科的工作结合了自组装、结晶学、凝聚态物理和理论化学领域的技术。研究人员设计了新的复杂系统,包括以可行的方式自组装成高度有序共晶的给体和受体化合物。我们证明,使用这种结晶方法可以很容易地实现双极性或单极性输运。为了进一步提高器件性能,我们提出了几种设计策略,例如使用新型给体和受体、调制供体(电离势,IP)和受体(电子亲和力,EA)组分的能量对准以及扩展 π 共轭骨架。此外,我们发现,当我们使用分子“掺杂”(2:1 共晶化)时,有机半导体的电荷输运性质可以从空穴传输主导转变为电子传输主导。我们期望通过有机给体和受体物种的配合物形成共晶将成为开发具有优于相应单体组件的性能的有机电子半导体的新策略。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验