Key Laboratory of Colloid and Interface Chemistry, Shandong University , Ministry of Education, Jinan 250100, PR China.
School of Chemistry and Chemical Engineering, Qufu Normal University , Qufu 273165, PR China.
Langmuir. 2016 Nov 15;32(45):11745-11753. doi: 10.1021/acs.langmuir.6b02756. Epub 2016 Nov 7.
A series of imidazolium-based surface-active ionic liquids (IM-SAILs), viz., single-chained IM-SAILs, 1-alkyl-3-methylimidazolium bromide ([Cmim]Br, n = 12, 14, 16), 1-dodecyl-3-methylimidazolium salicylate ([Cmim]Sal), 1-dodecyl-3-methylimidazolium 3-hydroxy-2-naphthoate ([Cmim]HNC), 1-dodecyl-3-methylimidazolium cinnamate ([Cmim]CA), 1-dodecyl-3-methylimidazolium para-hydroxy-cinnamate ([Cmim]PCA), gemini IM-SAIL, and 1,2-bis(3-dodecylimidazolium-1-yl)ethane bromide ([C-2-Cim]Br), along with three short-chained ionic liquids (ILs) [ethylammonium nitrate (EAN), propylammonium nitrate (PAN), and butylammonium nitrate (BAN)] were synthesized and applied to nematic liquid crystal (LC)/fluid interfaces. First, we evaluated the influence of the length and number of aliphatic chains as well as the counterion in the IM-SAIL structures on the anchoring of LCs at the aqueous/LC interface. It was observed that the threshold concentration of [Cmim]Br (n = 12, 14, 16) decreased with the increase in aliphatic chain length. And double-chained [C-2-Cim]Br has a far lower threshold concentration than single-chained [Cmim]Br. But the alteration of counterions (e.g., Br and aromatic counterions) scarcely affected the anchoring of LCs at the interface. Second, we investigated the alignment of LCs at the diverse IL/LC interfaces in the presence of IM-SAILs. It is found that the variations in both aliphatic chain length and number can remarkably change the trigger points of the orientational transition of LCs at the EAN/LC interface. Specifically, with a slight increase in the alkyl chain length of short-chained ILs, as the fluid medium, the orientation of LCs varied tremendously at the IL/LC interface. Therefore, the higher threshold concentration of IM-SAILs and the corresponding greater stability in the optical appearance of LCs at the EAN/LC interface compared to that of the aqueous/LC interface can be ascribed to the discrepancy in the microstructure of water and IL. Finally, we verified that the volume ratio of HO to EAN could more dramatically affect the alignment of LCs than the change in IM-SAIL concentration in aqueous solution. This work first illustrated the impact of SAIL structure on the LCs orientation at the aqueous/LC, IL/LC, and HO-IL mixture/LC interfaces, which will inspire us to obtain a stabilized molecular alignment of LCs at the IL/LC interfaces and to further design novel functionalized SAIL molecules for various chemical and biological applications.
一系列基于咪唑的表面活性剂离子液体(IM-SAILs),即单链 IM-SAILs,1-烷基-3-甲基咪唑溴化物([Cmim]Br,n=12、14、16)、1-十二烷基-3-甲基咪唑水杨酸盐([Cmim]Sal)、1-十二烷基-3-甲基咪唑 3-羟基-2-萘甲酸盐([Cmim]HNC)、1-十二烷基-3-甲基咪唑肉桂酸盐([Cmim]CA)、1-十二烷基-3-甲基咪唑对羟基肉桂酸盐([Cmim]PCA)、双子咪唑基表面活性剂离子液体(gemini IM-SAIL)和 1,2-双(3-十二烷基咪唑啉-1-基)乙烷溴化物([C-2-Cim]Br),以及三种短链离子液体(ILs)[乙基硝酸铵(EAN)、丙基硝酸铵(PAN)和丁基硝酸铵(BAN)]被合成并应用于向列液晶(LC)/流体界面。首先,我们评估了 IM-SAIL 结构中脂肪链的长度和数量以及抗衡离子对 LC 在水/LC 界面上的锚定的影响。观察到[Cmim]Br(n=12、14、16)的阈值浓度随着脂肪链长度的增加而降低。而双链[C-2-Cim]Br 的阈值浓度远低于单链[Cmim]Br。但是,抗衡离子的变化(例如,Br 和芳香抗衡离子)几乎不会影响 LC 在界面上的锚定。其次,我们研究了在不同的 IL/LC 界面存在 IM-SAIL 时 LC 的排列。发现脂肪链长度和数量的变化都可以显著改变 LC 在 EAN/LC 界面上的取向转变的触发点。具体来说,随着短链 IL 中烷基链长度的轻微增加,作为流体介质,LC 在 IL/LC 界面上的取向发生了巨大变化。因此,与水/LC 界面相比,IM-SAIL 的较高阈值浓度以及 LC 在 EAN/LC 界面上的光学外观的相应更大稳定性可以归因于水和 IL 的微观结构的差异。最后,我们验证了 HO 与 EAN 的体积比比在水溶液中改变 IM-SAIL 浓度更能显著影响 LC 的排列。这项工作首次说明了 SAIL 结构对水/LC、IL/LC 和 HO-IL 混合物/LC 界面上 LC 取向的影响,这将激励我们获得 IL/LC 界面上 LC 稳定的分子取向,并进一步设计用于各种化学和生物应用的新型功能化 SAIL 分子。