Suppr超能文献

腺苷在大鼠睡眠稳态成熟过程中的作用。

The role of adenosine in the maturation of sleep homeostasis in rats.

作者信息

Gvilia Irma, Suntsova Natalia, Kostin Andrey, Kalinchuk Anna, McGinty Dennis, Basheer Radhika, Szymusiak Ronald

机构信息

Research Service (151A3), Veterans Affairs Greater Los Angeles Healthcare System, North Hills, California;

Department of Medicine, University of California, Los Angeles, California.

出版信息

J Neurophysiol. 2017 Jan 1;117(1):327-335. doi: 10.1152/jn.00675.2016. Epub 2016 Oct 26.

Abstract

UNLABELLED

Sleep homeostasis in rats undergoes significant maturational changes during postweaning development, but the underlying mechanisms of this process are unknown. In the present study we tested the hypothesis that the maturation of sleep is related to the functional emergence of adenosine (AD) signaling in the brain. We assessed postweaning changes in 1) wake-related elevation of extracellular AD in the basal forebrain (BF) and adjacent lateral preoptic area (LPO), and 2) the responsiveness of median preoptic nucleus (MnPO) sleep-active cells to increasing homeostatic sleep drive. We tested the ability of exogenous AD to augment homeostatic responses to sleep deprivation (SD) in newly weaned rats. In groups of postnatal day (P)22 and P30 rats, we collected dialysate from the BF/LPO during baseline (BSL) wake-sleep, SD, and recovery sleep (RS). HPLC analysis of microdialysis samples revealed that SD in P30 rats results in significant increases in AD levels compared with BSL. P22 rats do not exhibit changes in AD levels in response to SD. We recorded neuronal activity in the MnPO during BSL, SD, and RS at P22/P30. MnPO neurons exhibited adult-like increases in waking neuronal discharge across SD on both P22 and P30, but discharge rates during enforced wake were higher on P30 vs. P22. Central administration of AD (1 nmol) during SD on P22 resulted in increased sleep time and EEG slow-wave activity during RS compared with saline control. Collectively, these findings support the hypothesis that functional reorganization of an adenosinergic mechanism of sleep regulation contributes to the maturation of sleep homeostasis.

NEW & NOTEWORTHY: Brain mechanisms that regulate the maturation of sleep are understudied. The present study generated first evidence about a potential mechanistic role for adenosine in the maturation of sleep homeostasis. Specifically, we demonstrate that early postweaning development in rats, when homeostatic response to sleep loss become adult like, is characterized by maturational changes in wake-related production/release of adenosine in the brain. Pharmacologically increased adenosine signaling in developing brain facilitates homeostatic responses to sleep deprivation.

摘要

未标记

大鼠的睡眠稳态在断奶后发育过程中经历显著的成熟变化,但这一过程的潜在机制尚不清楚。在本研究中,我们检验了睡眠成熟与大脑中腺苷(AD)信号功能出现有关的假设。我们评估了断奶后的变化:1)基底前脑(BF)和相邻的外侧视前区(LPO)中与觉醒相关的细胞外AD升高,以及2)视前正中核(MnPO)睡眠活跃细胞对稳态睡眠驱动力增加的反应性。我们测试了外源性AD增强新断奶大鼠对睡眠剥夺(SD)的稳态反应的能力。在出生后第(P)22天和P30天的大鼠组中,我们在基线(BSL)觉醒-睡眠、SD和恢复睡眠(RS)期间从BF/LPO收集透析液。对微透析样本的HPLC分析显示,与BSL相比,P30大鼠的SD导致AD水平显著增加。P22大鼠对SD的反应中AD水平没有变化。我们在P22/P30的BSL、SD和RS期间记录了MnPO中的神经元活动。MnPO神经元在P22和P30的整个SD过程中,觉醒神经元放电均呈现出类似成年大鼠的增加,但在强制觉醒期间,P30的放电率高于P22。在P22的SD期间中枢给予AD(1 nmol),与生理盐水对照相比,RS期间睡眠时间和脑电图慢波活动增加。总的来说,这些发现支持了睡眠调节的腺苷能机制的功能重组有助于睡眠稳态成熟的假设。

新发现与值得注意之处

调节睡眠成熟的脑机制研究不足。本研究首次提供了关于腺苷在睡眠稳态成熟中潜在机制作用的证据。具体而言,我们证明大鼠断奶后早期发育阶段,当对睡眠丧失的稳态反应变得像成年大鼠时,其特征是大脑中与觉醒相关的腺苷产生/释放的成熟变化。在发育中的大脑中,通过药理学方法增加腺苷信号促进了对睡眠剥夺的稳态反应。

相似文献

1
The role of adenosine in the maturation of sleep homeostasis in rats.
J Neurophysiol. 2017 Jan 1;117(1):327-335. doi: 10.1152/jn.00675.2016. Epub 2016 Oct 26.
2
Maturation of sleep homeostasis in developing rats: a role for preoptic area neurons.
Am J Physiol Regul Integr Comp Physiol. 2011 Apr;300(4):R885-94. doi: 10.1152/ajpregu.00727.2010. Epub 2011 Feb 16.
3
Neuronal activity in the preoptic hypothalamus during sleep deprivation and recovery sleep.
J Neurophysiol. 2014 Jan;111(2):287-99. doi: 10.1152/jn.00504.2013. Epub 2013 Oct 30.
7
Wake-promoting and sleep-suppressing actions of hypocretin (orexin): basal forebrain sites of action.
Neuroscience. 2001;106(4):699-715. doi: 10.1016/s0306-4522(01)00319-0.
8
Adenosinergic modulation of rat basal forebrain neurons during sleep and waking: neuronal recording with microdialysis.
J Physiol. 1999 Dec 15;521 Pt 3(Pt 3):679-90. doi: 10.1111/j.1469-7793.1999.00679.x.
9
Adenosine and sleep homeostasis in the Basal forebrain.
J Neurosci. 2006 Aug 2;26(31):8092-100. doi: 10.1523/JNEUROSCI.2181-06.2006.
10
The role of cholinergic basal forebrain neurons in adenosine-mediated homeostatic control of sleep: lessons from 192 IgG-saporin lesions.
Neuroscience. 2008 Nov 11;157(1):238-53. doi: 10.1016/j.neuroscience.2008.08.040. Epub 2008 Aug 27.

引用本文的文献

1
Preoptic area influences sleep-related seizures in a genetic epilepsy mouse model.
Cereb Cortex. 2025 Jul 1;35(7). doi: 10.1093/cercor/bhaf187.
2
Preoptic area controls sleep-related seizure onset in a genetic epilepsy mouse model.
bioRxiv. 2024 Sep 14:2023.11.24.568593. doi: 10.1101/2023.11.24.568593.
3
Caffeine therapy in preterm infants: effects in 2nd and 3rd childhood.
Rev Paul Pediatr. 2024 Jul 8;43:e2024036. doi: 10.1590/1984-0462/2025/43/2024036. eCollection 2024.
4
The Underlying Mechanisms of Sleep Deprivation Exacerbating Neuropathic Pain.
Nat Sci Sleep. 2023 Jul 28;15:579-591. doi: 10.2147/NSS.S414174. eCollection 2023.
5
Ontogenesis of the molecular response to sleep loss.
Neurobiol Sleep Circadian Rhythms. 2023 Mar 16;14:100092. doi: 10.1016/j.nbscr.2023.100092. eCollection 2023 May.
6
Ontogenesis of the molecular response to sleep loss.
bioRxiv. 2023 Jan 18:2023.01.16.524266. doi: 10.1101/2023.01.16.524266.
8
The Ontogenesis of Mammalian Sleep: Form and Function.
Curr Sleep Med Rep. 2020 Dec;6(4):267-279. doi: 10.1007/s40675-020-00190-y. Epub 2020 Nov 13.
10
Preoptic Area Modulation of Arousal in Natural and Drug Induced Unconscious States.
Front Neurosci. 2021 Feb 12;15:644330. doi: 10.3389/fnins.2021.644330. eCollection 2021.

本文引用的文献

1
An Adenosine-Mediated Glial-Neuronal Circuit for Homeostatic Sleep.
J Neurosci. 2016 Mar 30;36(13):3709-21. doi: 10.1523/JNEUROSCI.3906-15.2016.
3
Neuronal activity in the preoptic hypothalamus during sleep deprivation and recovery sleep.
J Neurophysiol. 2014 Jan;111(2):287-99. doi: 10.1152/jn.00504.2013. Epub 2013 Oct 30.
5
Adenosine A(2A) receptors regulate the activity of sleep regulatory GABAergic neurons in the preoptic hypothalamus.
Am J Physiol Regul Integr Comp Physiol. 2013 Jul 1;305(1):R31-41. doi: 10.1152/ajpregu.00402.2012. Epub 2013 May 1.
6
Sleep homeostasis and depression: studies with the rat clomipramine model of depression.
Neuroscience. 2012 Jun 14;212:149-58. doi: 10.1016/j.neuroscience.2012.03.029. Epub 2012 Apr 16.
7
Adenosine inhibits glutamatergic input to basal forebrain cholinergic neurons.
J Neurophysiol. 2012 May;107(10):2769-81. doi: 10.1152/jn.00528.2011. Epub 2012 Feb 22.
8
Maturation of sleep homeostasis in developing rats: a role for preoptic area neurons.
Am J Physiol Regul Integr Comp Physiol. 2011 Apr;300(4):R885-94. doi: 10.1152/ajpregu.00727.2010. Epub 2011 Feb 16.
10
Adenosine, energy metabolism and sleep homeostasis.
Sleep Med Rev. 2011 Apr;15(2):123-35. doi: 10.1016/j.smrv.2010.06.005. Epub 2010 Oct 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验