Suppr超能文献

通过靶向肽基转移酶中心的核糖体抗生素进行的特定背景下的翻译抑制。

Context-specific inhibition of translation by ribosomal antibiotics targeting the peptidyl transferase center.

作者信息

Marks James, Kannan Krishna, Roncase Emily J, Klepacki Dorota, Kefi Amira, Orelle Cédric, Vázquez-Laslop Nora, Mankin Alexander S

机构信息

Center for Biomolecular Sciences, University of Illinois, Chicago, IL 60607.

Center for Biomolecular Sciences, University of Illinois, Chicago, IL 60607

出版信息

Proc Natl Acad Sci U S A. 2016 Oct 25;113(43):12150-12155. doi: 10.1073/pnas.1613055113. Epub 2016 Oct 10.

Abstract

The first broad-spectrum antibiotic chloramphenicol and one of the newest clinically important antibacterials, linezolid, inhibit protein synthesis by targeting the peptidyl transferase center of the bacterial ribosome. Because antibiotic binding should prevent the placement of aminoacyl-tRNA in the catalytic site, it is commonly assumed that these drugs are universal inhibitors of peptidyl transfer and should readily block the formation of every peptide bond. However, our in vitro experiments showed that chloramphenicol and linezolid stall ribosomes at specific mRNA locations. Treatment of bacterial cells with high concentrations of these antibiotics leads to preferential arrest of translation at defined sites, resulting in redistribution of the ribosomes on mRNA. Antibiotic-mediated inhibition of protein synthesis is most efficient when the nascent peptide in the ribosome carries an alanine residue and, to a lesser extent, serine or threonine in its penultimate position. In contrast, the inhibitory action of the drugs is counteracted by glycine when it is either at the nascent-chain C terminus or at the incoming aminoacyl-tRNA. The context-specific action of chloramphenicol illuminates the operation of the mechanism of inducible resistance that relies on programmed drug-induced translation arrest. In addition, our findings expose the functional interplay between the nascent chain and the peptidyl transferase center.

摘要

第一种广谱抗生素氯霉素以及最新的临床重要抗菌药物之一利奈唑胺,通过作用于细菌核糖体的肽基转移酶中心来抑制蛋白质合成。由于抗生素结合应能阻止氨酰基-tRNA进入催化位点,人们通常认为这些药物是肽基转移的通用抑制剂,应该能轻易阻断每个肽键的形成。然而,我们的体外实验表明,氯霉素和利奈唑胺会使核糖体在特定的mRNA位置停滞。用高浓度的这些抗生素处理细菌细胞会导致翻译在特定位点优先停滞,从而使核糖体在mRNA上重新分布。当核糖体中的新生肽在其倒数第二个位置带有丙氨酸残基,以及在较小程度上带有丝氨酸或苏氨酸时,抗生素介导的蛋白质合成抑制最为有效。相反,当甘氨酸位于新生链的C末端或进入的氨酰基-tRNA上时,药物的抑制作用会被抵消。氯霉素的上下文特异性作用揭示了依赖于程序性药物诱导的翻译停滞的诱导抗性机制的运作。此外,我们的发现揭示了新生链与肽基转移酶中心之间的功能相互作用。

相似文献

1
Context-specific inhibition of translation by ribosomal antibiotics targeting the peptidyl transferase center.
Proc Natl Acad Sci U S A. 2016 Oct 25;113(43):12150-12155. doi: 10.1073/pnas.1613055113. Epub 2016 Oct 10.
2
Structural basis for the context-specific action of the classic peptidyl transferase inhibitor chloramphenicol.
Nat Struct Mol Biol. 2022 Feb;29(2):152-161. doi: 10.1038/s41594-022-00720-y. Epub 2022 Feb 14.
3
Dual effect of chloramphenicol peptides on ribosome inhibition.
Amino Acids. 2017 May;49(5):995-1004. doi: 10.1007/s00726-017-2406-5. Epub 2017 Mar 10.
4
Structural basis for context-specific inhibition of translation by oxazolidinone antibiotics.
Nat Struct Mol Biol. 2022 Feb;29(2):162-171. doi: 10.1038/s41594-022-00723-9. Epub 2022 Feb 14.
6
Dynamics of the context-specific translation arrest by chloramphenicol and linezolid.
Nat Chem Biol. 2020 Mar;16(3):310-317. doi: 10.1038/s41589-019-0423-2. Epub 2019 Dec 16.
7
23S rRNA nucleotides in the peptidyl transferase center are essential for tryptophanase operon induction.
J Bacteriol. 2009 Jun;191(11):3445-50. doi: 10.1128/JB.00096-09. Epub 2009 Mar 27.
8
Binding of Macrolide Antibiotics Leads to Ribosomal Selection against Specific Substrates Based on Their Charge and Size.
Cell Rep. 2016 Aug 16;16(7):1789-99. doi: 10.1016/j.celrep.2016.07.018. Epub 2016 Aug 4.
9
Changes produced by bound tryptophan in the ribosome peptidyl transferase center in response to TnaC, a nascent leader peptide.
Proc Natl Acad Sci U S A. 2006 Mar 7;103(10):3598-603. doi: 10.1073/pnas.0600082103. Epub 2006 Feb 27.
10

引用本文的文献

1
Natural products influence bacteriophage infectivity.
Nat Prod Rep. 2025 Aug 18. doi: 10.1039/d5np00014a.
2
A Natural Depsipeptide Antibiotic that Targets the E site of the Bacterial Ribosome.
Res Sq. 2025 Jul 3:rs.3.rs-6925047. doi: 10.21203/rs.3.rs-6925047/v1.
3
A bacterial regulatory uORF senses multiple classes of ribosome-targeting antibiotics.
Elife. 2025 May 29;13:RP101217. doi: 10.7554/eLife.101217.
5
Structural insights into context-dependent inhibitory mechanisms of chloramphenicol in cells.
Nat Struct Mol Biol. 2025 Feb;32(2):257-267. doi: 10.1038/s41594-024-01441-0. Epub 2024 Dec 12.
6
Paenilamicins are context-specific translocation inhibitors of protein synthesis.
Nat Chem Biol. 2024 Dec;20(12):1691-1700. doi: 10.1038/s41589-024-01752-9. Epub 2024 Oct 17.
7
Context-specific inhibition of mitochondrial ribosomes by phenicol and oxazolidinone antibiotics.
bioRxiv. 2024 Aug 21:2024.08.21.609012. doi: 10.1101/2024.08.21.609012.
8
Global regulation via modulation of ribosome pausing by the ABC-F protein EttA.
Nat Commun. 2024 Jul 26;15(1):6314. doi: 10.1038/s41467-024-50627-z.
9
Berberine analog of chloramphenicol exhibits a distinct mode of action and unveils ribosome plasticity.
Structure. 2024 Sep 5;32(9):1429-1442.e6. doi: 10.1016/j.str.2024.06.013. Epub 2024 Jul 16.
10

本文引用的文献

1
Binding of Macrolide Antibiotics Leads to Ribosomal Selection against Specific Substrates Based on Their Charge and Size.
Cell Rep. 2016 Aug 16;16(7):1789-99. doi: 10.1016/j.celrep.2016.07.018. Epub 2016 Aug 4.
2
The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2016 update.
Nucleic Acids Res. 2016 Jul 8;44(W1):W3-W10. doi: 10.1093/nar/gkw343. Epub 2016 May 2.
3
Comprehensive identification of translation start sites by tetracycline-inhibited ribosome profiling.
DNA Res. 2016 Jun;23(3):193-201. doi: 10.1093/dnares/dsw008. Epub 2016 Mar 23.
4
Clarifying the Translational Pausing Landscape in Bacteria by Ribosome Profiling.
Cell Rep. 2016 Feb 2;14(4):686-694. doi: 10.1016/j.celrep.2015.12.073. Epub 2016 Jan 14.
5
Effect of codon adaptation on codon-level and gene-level translation efficiency in vivo.
BMC Genomics. 2014 Dec 16;15(1):1115. doi: 10.1186/1471-2164-15-1115.
6
The general mode of translation inhibition by macrolide antibiotics.
Proc Natl Acad Sci U S A. 2014 Nov 11;111(45):15958-63. doi: 10.1073/pnas.1417334111. Epub 2014 Oct 27.
7
Sequence selectivity of macrolide-induced translational attenuation.
Proc Natl Acad Sci U S A. 2014 Oct 28;111(43):15379-84. doi: 10.1073/pnas.1410356111. Epub 2014 Oct 13.
8
A proton wire to couple aminoacyl-tRNA accommodation and peptide-bond formation on the ribosome.
Nat Struct Mol Biol. 2014 Sep;21(9):787-93. doi: 10.1038/nsmb.2871. Epub 2014 Aug 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验