Marks James, Kannan Krishna, Roncase Emily J, Klepacki Dorota, Kefi Amira, Orelle Cédric, Vázquez-Laslop Nora, Mankin Alexander S
Center for Biomolecular Sciences, University of Illinois, Chicago, IL 60607.
Center for Biomolecular Sciences, University of Illinois, Chicago, IL 60607
Proc Natl Acad Sci U S A. 2016 Oct 25;113(43):12150-12155. doi: 10.1073/pnas.1613055113. Epub 2016 Oct 10.
The first broad-spectrum antibiotic chloramphenicol and one of the newest clinically important antibacterials, linezolid, inhibit protein synthesis by targeting the peptidyl transferase center of the bacterial ribosome. Because antibiotic binding should prevent the placement of aminoacyl-tRNA in the catalytic site, it is commonly assumed that these drugs are universal inhibitors of peptidyl transfer and should readily block the formation of every peptide bond. However, our in vitro experiments showed that chloramphenicol and linezolid stall ribosomes at specific mRNA locations. Treatment of bacterial cells with high concentrations of these antibiotics leads to preferential arrest of translation at defined sites, resulting in redistribution of the ribosomes on mRNA. Antibiotic-mediated inhibition of protein synthesis is most efficient when the nascent peptide in the ribosome carries an alanine residue and, to a lesser extent, serine or threonine in its penultimate position. In contrast, the inhibitory action of the drugs is counteracted by glycine when it is either at the nascent-chain C terminus or at the incoming aminoacyl-tRNA. The context-specific action of chloramphenicol illuminates the operation of the mechanism of inducible resistance that relies on programmed drug-induced translation arrest. In addition, our findings expose the functional interplay between the nascent chain and the peptidyl transferase center.
第一种广谱抗生素氯霉素以及最新的临床重要抗菌药物之一利奈唑胺,通过作用于细菌核糖体的肽基转移酶中心来抑制蛋白质合成。由于抗生素结合应能阻止氨酰基-tRNA进入催化位点,人们通常认为这些药物是肽基转移的通用抑制剂,应该能轻易阻断每个肽键的形成。然而,我们的体外实验表明,氯霉素和利奈唑胺会使核糖体在特定的mRNA位置停滞。用高浓度的这些抗生素处理细菌细胞会导致翻译在特定位点优先停滞,从而使核糖体在mRNA上重新分布。当核糖体中的新生肽在其倒数第二个位置带有丙氨酸残基,以及在较小程度上带有丝氨酸或苏氨酸时,抗生素介导的蛋白质合成抑制最为有效。相反,当甘氨酸位于新生链的C末端或进入的氨酰基-tRNA上时,药物的抑制作用会被抵消。氯霉素的上下文特异性作用揭示了依赖于程序性药物诱导的翻译停滞的诱导抗性机制的运作。此外,我们的发现揭示了新生链与肽基转移酶中心之间的功能相互作用。